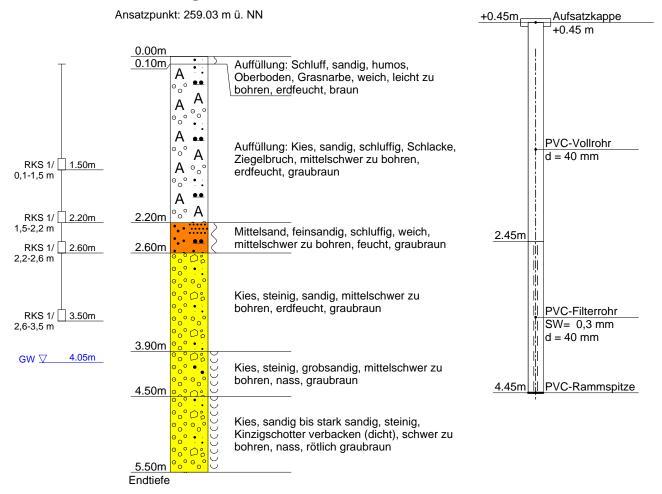

ANLAGE 1

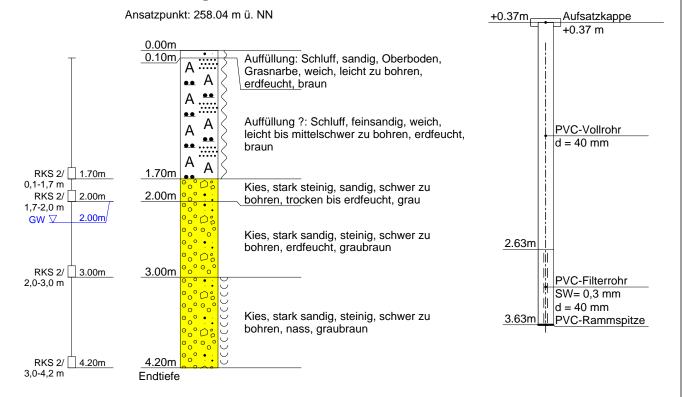
Planunterlagen

- 1.1
- Übersichtslageplan, Maßstab 1 : 25 000 Lageplan der Boden- und Grundwasseraufschlüsse, Maßstab 1 : 1 000 Grundwassergleichenplan, Stichtag 17.03.2011, Maßstab 1 : 1 000 1.2
- 1.3

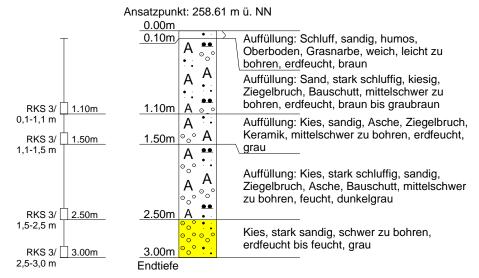

ANLAGE 2

Schichtenverzeichnisse und Ausbaupläne der Kleinrammbohrungen und Grundwassermessstellen

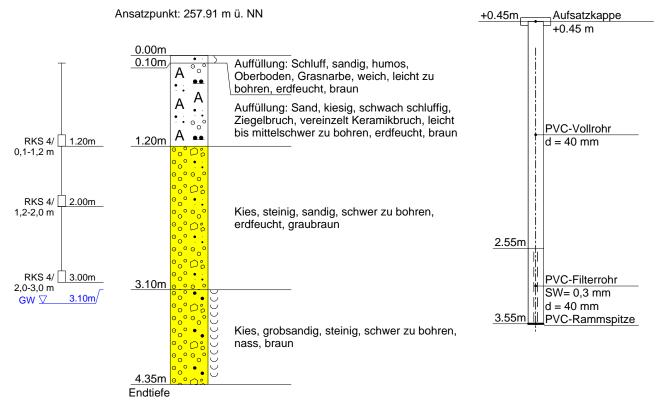
Gutachten-Nr.:	HPC 2110710	Anlage:	2, Seite 1
Projektname:	Untergrund- und Gefahr	verdachtserkund	lungen BV EDEKA Wolfach
Rechtswert:		Hochwert:	
GOK m ü. NN:	259,03	POK m ü. NN:	259,49
Maßstab:	1: 50 / 1: 10	ausgeführt am:	16.03.2011
BOHRPROFIL		Dateiname:	hpc 2110710 Anl 2.dcb

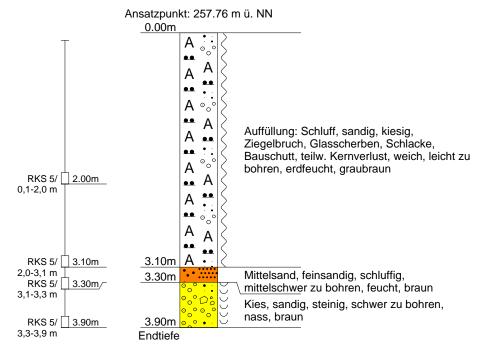

RKS₁

Gutachten-Nr.:	HPC 2110710	Anlage:	2, Seite 2
Projektname:	Untergrund- und Gefahr	verdachtserkund	ungen BV EDEKA Wolfach
Rechtswert:		Hochwert:	
GOK m ü. NN:	258,04	POK m ü. NN:	258,42
Maßstab:	1: 50 / 1: 10	ausgeführt am:	16.03.2011
BOHRPROFIL		Dateiname:	hpc 2110710 Anl 2.dcb

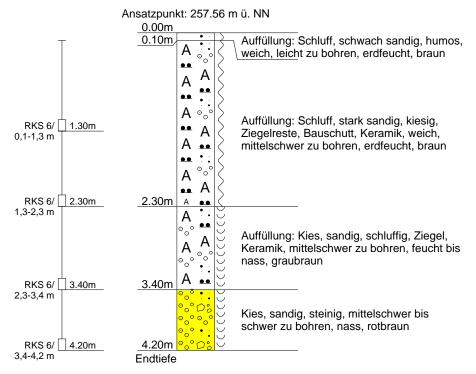


RKS₂

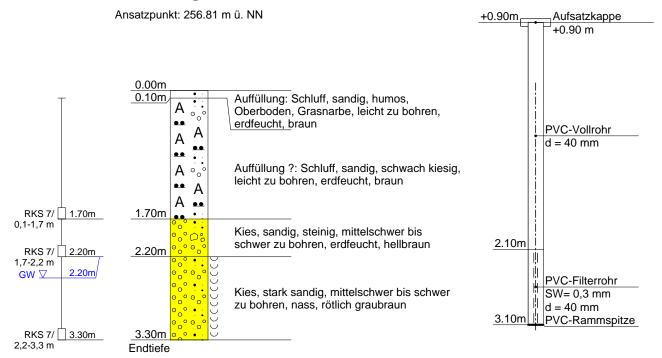

Gutachten-Nr.: HPC 2110710 Anlage: 2, Seite 3
Till of 2110710 Till age. 2, octoo
Projektname: Untergrund- und Gefahrverdachtserkundungen BV EDEKA Wolfac
Rechtswert: Hochwert:
GOK m ü. NN: 258,61 POK m ü. NN:
Maßstab: 1: 50 ausgeführt am: 16.03.2011
BOHRPROFIL Dateiname: hpc 2110710 Anl 2.dcb


Gutachten-Nr.:	HPC 2110710	Anlage:	2, Seite 4
Projektname:	Untergrund- und Gefahr	verdachtserkund	lungen BV EDEKA Wolfach
Rechtswert:		Hochwert:	
GOK m ü. NN:	257,91	POK m ü. NN:	258,36
Maßstab:	1: 50 / 1: 10	ausgeführt am:	16.03.2011
BOHRPROFIL		Dateiname:	hpc 2110710 Anl 2.dcb

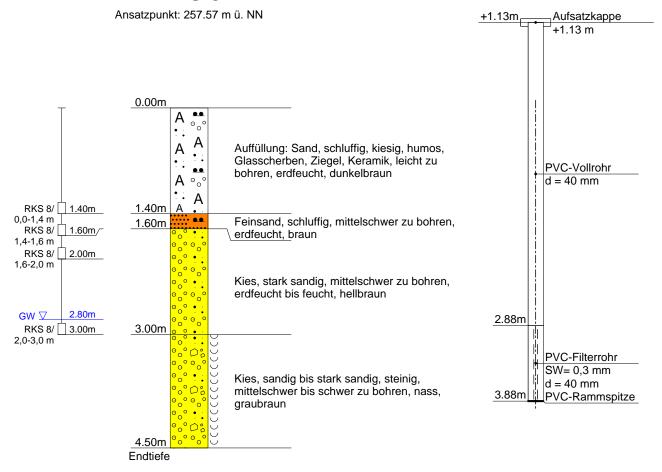
Gutachten-Nr.:	HPC 2110710	Anlage: 2	2, Seite 5
Projektname:	Untergrund- und Gefahr	verdachtserkundu	ngen BV EDEKA Wolfach
Rechtswert:		Hochwert:	
GOK m ü. NN:	257,76	POK m ü. NN:	
Maßstab:	1: 50	ausgeführt am:	17.03.2011
BOHRPROFIL		Dateiname: I	npc 2110710 Anl 2.dcb

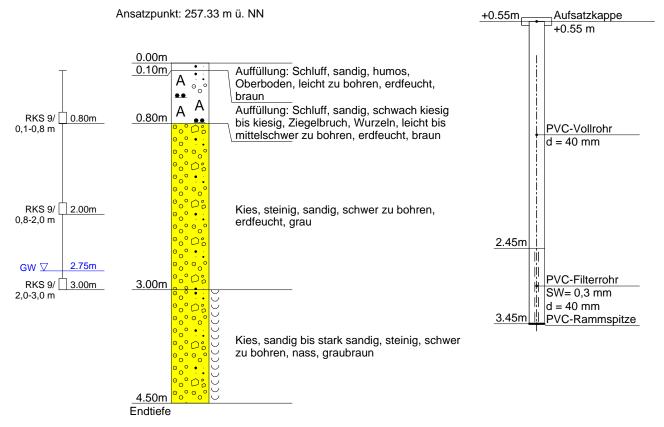


Gutachten-Nr.:	HPC 2110710	Anlage: 2	, Seite 6
Projektname:	Untergrund- und Gefahr	erdachtserkundun	igen BV EDEKA Wolfach
Rechtswert:		Hochwert:	
GOK m ü. NN:	257,56	POK m ü. NN:	
Maßstab:	1: 50	ausgeführt am: 1	7.03.2011
BOHRPROFIL		Dateiname: h	pc 2110710 Anl 2.dcb



RKS₆


Gutachten-Nr.:	HPC 2110710	Anlage:	2, Seite 7
Projektname:	Untergrund- und Gefahr	verdachtserkund	lungen BV EDEKA Wolfach
Rechtswert:		Hochwert:	
GOK m ü. NN:	256,81	POK m ü. NN:	257,71
Maßstab:	1: 50 / 1: 10	ausgeführt am:	17.03.2011
BOHRPROFIL		Dateiname:	hpc 2110710 Anl 2.dcb


KA Wolfach
Anl 2.dcb

Gutachten-Nr.:	HPC 2110710	Anlage:	2, Seite 9
Projektname:	Untergrund- und Gefahr	verdachtserkund	lungen BV EDEKA Wolfach
Rechtswert:		Hochwert:	
GOK m ü. NN:	257,33	POK m ü. NN:	257,91
Maßstab:	1: 50 / 1: 10	ausgeführt am:	17.03.2011
BOHRPROFIL		Dateiname:	hpc 2110710 Anl 2.dcb

ANLAGE 3

Probennahmeprotokolle

- 3.1 Boden
- 3.2 Grundwasser

Gutachten Nr. 2110710, Anlage 3.1, Seite 1 z.B.: Kalktest, Bohrhindernis z.B. Meßmittel Ident.-Nr. Sonstiges Sonstiges Projekt:..... Projekt-Nr.: 2-M07-10 Konsistenz | Bohrfortschritt | Bodenfeuchte | Wasserstand | organolept. Beurteilung unan Jeles HS 50 100 250 500 1000 unaufethe Grundwasserproben in ml una-fethy una filling huan felle eunen Hilling Geruch, etc. m u. GOK 4.05 Bodenluff Boden Lampentyp Eichung Pipette AK Anzahl n Gasmaus SG XAD Datum : 16.03.2011 Wetter BEDELLE fr, erdf,feucht,naß Bodenluftproben enost exp escult. Can ? esol Luaß 7 ny 3 l, m, s PID Messungen (ppm) bre,wei,ste,hfe,fes いかい han Truppführer / Techniker Projektbearbeiter: *いいていばす* braun asto Klusicschaft wieden dint tillings 61 Farbe ystor. 9165 go br. Halbquantitat. Bodenluftmessung Verwendetes Prüfröhrchen Hübe ppm Oberbooken, Grassiav he Schlecke, Augelianos. Nebengemengteile Meßpunkt: RKS 1 Aufschlußart: RKS KG, HS, Md, T, U, S(f-m-g), G(f-m-g), X, Y 50 100 250 500 1000 Bodenproben in ml Hauptbodenart Firma / Auftraggeber : EPEKA G15-51X G,X,93 Probenverzeichnis / Meßergebnisse 14.5,4 HS Bohrtiefe in m | Mächtigkeit | KA Entnahme- bzw. Meßtiefe in m 0,0 0.7

Geländebericht

Einsatzort ... COLFACH

bis

0,7

Schichtenverzeichnis

P 3,9 56 von

かが

Nov

F0252

Gutachten Nr. 2110710, Anlage 3.1, Seite 2 z.B.: Kalktest, Bohrhindernis z.B. Meßmittel Ident.-Nr. Sonstiges Sonstiges Projekt-Nr.: 2-M07-10 Projekt:.... | Konsistenz | Bohrfortschritt | Bodenfeuchte | Wasserstand | organolept. Beurteilung HS 50 100 250 500 1000 Grundwasserproben in ml unan/felles unan fello ma fello una Heilis un aufilles Geruch, etc. tr, erdf,feucht,naß mu. GOK 0/2 Bodenluff Boden Lampenlyp Eichung Pipette AK Anzahl n Gasmaus SG XAD Datum : 16.03.204 Wetter: BEDELLI Bodenluftproben Cal Line exil K-eroy hay 1. m. I, m, s 0) 57 V) PID Messungen (ppm bre,wei,ste,hfe,fes 3 3 Truppführer / Techniker : [] MHJKE Projektbearbeiter: WILDEN HOF bren arbri 9565 bien Farbe Gran Halbquantitat. Bodenluftmessung Verwendetes Prüfröhrchen Hübe ppm 6105 wish Nebengemengteile Meßpunkt: RKS 2 Aufschlußart: RKS KG, HS, Md, T, U, S(f-m-g), G(f-m-g), X, Y Obehalu / 1000 Bodenproben in ml HS 50 100 250 500 Hauptbodenart Firma / Auftraggeber : EPEKA Einsatzort: BocFACA Probenverzeichnis / Meßergebnisse Is 5,5 x Geländebericht Bohrtiefe in m Mächtigkeit KA Entnahme- bzw. Meßtiefe in m Schichtenverzeichnis 3,0 2,0 01/ 3,0 0,7 4.2 0,1 bis 2,0 t'Y

2,0 3,0

NON

0

Non

F0252

Gutachten Nr. 2110710, Anlage 3.1, Seite 3 z.B.: Kalktest, Bohrhindernis 1/25 : 0 % Unterschrift PB: z.B. Meßmittel Ident.-Nr. Sonstiges Projekt-Nr. 240710 Sonstiges Projekt:.... 18% | Konsistenz | Bohrfortschritt | Bodenfeuchte | Wasserstand | organolept. Beurteilung XAD HS 50 100 250 500 1000 un auffeith Grundwasserproben in ml una Hilling una felles unan fethe una Hally g Geruch, etc. Bowlas : CO2: 0,5% LEL 6% mu. GOK Datum . 16. 03.2011 Wetter: BEDECU! Bodenluff Boden Lampentyp Eichung Pipette AK Anzahl n Gasmaus SG tr, erdf,feucht,naß exil- host Bodenluftproben escal frient end. eself. 2×moto 3 (faren l, m, s 3 Gasmessung an 3 (V) PID Messungen (ppm) bre,wei,ste,hfe,fes 28 Truppführer / Techniker : TAHULE Projektbearbeiter: WILDEN HOF 65- 915/ didan Som Farbe gram gran Halbquantitat. Bodenluftmessung Verwendetes Prüfröhrchen Hübe ppm A: yelbruch, Ach, Bushult Oxforden / Grasmashe Lialbines, Busshit Ask, Lighter, Louis Nebengemengteile Meßpunkt: RKS 3... Aufschlußart: RKS. KG, HS, Md, T, U, S(f-m-g), G(f-m-g), X, Y 50 100 250 500 1000 Bodenproben in ml Hauptbodenart 7 Firma / Auftraggeber : EPEKA Probenverzeichnis / Meßergebnisse 4,2,4 G, 11,5 Sing Geländebericht Einsatzort : 60 CFACA £ Bohrtiefe in m Mächtigkeit KA Entnahme- bzw. Meßtiefe in m Schichtenverzeichnis 10 20 70 017 50 2,5 bis 1.5 30 000 bis 70 VON Non F0252

	æ
--	---

z.B.: Kalktest, Bohrhindernis Unterschrift PB: z.B. Meßmittel Ident.-Nr. Sonstiges Sonstiges Projekt:.... Projekt-Nr. 2-M07-10 Konsistenz | Bohrfortschritt | Bodenfeuchte | Wasserstand | organolept. Beurteilung XAD HS 50 100 250 500 1000 Grundwasserproben in ml man Hillis unan () una Hilli unanfalles 02 20,9% Geruch, etc. Bohrdurchmesser in mm:(e.g..... Unterschrift AD:)....... m u. GOK COL : 0,13% Wetter Server (Recen Datum : 03.2011 Bodenluft Boden Lampentyp Eichung Pipette AK Anzahl n Gasmaus SG Bodenluftproben fr, erdf,feucht,naß erel -C437 exx eral 2xm=40 But lew? , in l, m, s 5 Ś Exhuemas an PID Messungen (ppm) bre,wei,ste,hfe,fes 5 Truppführer / Techniker : Jatole Projektbearbeiter ... WILDENHOF Gram Aighnes, herunto (origi) braun 4565 Farbe Halbquantitat. Bodenluftmessung Verwendetes Prüfröhrchen Hübe ppm Boundous be Ober botten Posissia he Nebengemengteile Meßpunkt: RKS 4 Aufschlußart: RKS KG, HS, Md, T, U, S(f-m-g), G(f-m-g), X, Y 50 100 250 500 1000 2. Ausah Mach Bodenproben in ml Hauptbodenart Einsatzort : Wolffon (7, 95,× Probenverzeichnis / Meßergebnisse 5,912 4,5, h Firma / Auftraggeber : EPEKA Geländebericht HS Bohrtiefe in m | Mächtigkeit | KA Schichtenverzeichnis Entnahme- bzw. Meßtiefe in m 2,0 3,0 Ë N'0 3,1 4,35 pis 2,0 Non von F0252

	Gutacht	en N	r. 2	11	T	10,	An	lage	e 3.	1, \$	Seit	te 5	1	į.	1				Г	_	_		i	Γ	, T	Т	·	%0
HARRESS PICKEL CONSULT	10710	PB:		Sonstiges	z.B.: Kalktest, Bohrhindernis	kite ku												Sonstiges	z.B. Meßmittel IdentNr.									14,5 5.0 man LEL E
	Projekt:2.407.10	Unterschrift PB:		organolept. Beurteilung	Geruch, etc.	lander Halling	rain the Con	in a Killia									toon togetalle	Grundwasserproben in ml	50 100 250 500 1000									1. 0,41 % O> : 25.6%
	7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	g. 108	7	Bodenfeuchte Wasserstand c	1	7		*									anejsters , a		SG XAD HS 5				, -					(0)
	Datum 17.03.2eM Wetter NEBE / WIESE	Unterschrift AD;				enal	Kunt	and and								-	からいい	Bodenluftproben			J×4 = 10							1. 7. ing.
	Datum :	09 n		z Bohrfortschritt		2	2	8.										. (шс	Bodenluft Boden Lampentyp Eichung Pipette AK Anzahl n Gasmaus		3							Carinatte
	12 TE	in mm :		e Konsistenz	-	gibt lue	ł	an-									A 31.00k	PID Messungen (ppm)	it Boden Lampentyp			,						
	WILDER	Bohrdurchme		le Farbe		busht	4	29												¥	a specific dist	2	A STATE OF THE STA					
	Projektbearbeiter: <i>いしをいまを</i> Truppführer / Techniker: JAHN にを	RKS		Nebengemengteile	KG, HS, Md, T, U, S(f-m-g), G(f-m-g), X, Y	Acyelbrum, Calissonine,								2.0			1	Halbquantitat. Bodenlyftmessung	Verwendetes Prüfröhrchen Hüber									
		RK		odenart	, Md, T,	na	3, U	<									е		100 250 500 1000 Ve	7	1	1	9	ő	E .			
	EDEKA 4CH	Aufschlußart:		KA Hauptbodenart	J/n	j 4,5,9	4 MS, 15	4 G,S, X		•							leßergebniss	Bodenproben in ml	HS 50 100 2		,	at.						
	Firma / Auftraggeber: <i>ÉpekA</i> Einsatzort: んo ムデオC ル	Meßpunkt: RUSS	Schichtenverzeichnis	Mächtigkeit	mui	,	20	0,6								•	Probenverzeichnis / Meßergebnisse	Entnahme- bzw. Meßtiefe in m	bis	2,0	3,1	3,3	3,9		si s			
	Firma / A: Einsatzor	Meßpunk	Schichte	Bohrtiefe in m	von bis		3,1 3,3	3,3 3,9									Probenv	Entnahme- bz	von	10	2,0	3,11	3,3					F0252

Geländebericht

Gutachten Nr. 2110710, Anlage 3.1, Seite 6 z.B.: Kalktest, Bohrhindernis Unterschrift PB: z.B. Meßmittel Ident.-Nr. Sonstiges Sonstiges Projekt :.... Job 54 7607: 30 Projekt-Nr. 2M0710 Konsistenz | Bohrfortschritt | Bodenfeuchte | Wasserstand | organolept. Beurteilung XAD HS 50 100 250 500 1000 unan filling Grundwasserproben in ml unan/filles unan Hilles unan fetir Geruch, etc. 100 totale Unterschrift AD: 9. / Olde Gusmessung our aftern Boistos: CO; O,04% m u. GOK Datum: 17.03.204 Wetter - NEZT / NYESET Bodenluff Boden | Lampentyp Eichung | Pipette | AK Anzahl n | Gasmaus | SG * wiest unesses, Bodenluftproben tr, erdf,feucht,naß endl. enett us S Lung eral Lamen 3 l, m, s 4 Bohrdurchmesser in mm: . (p.c..... PID Messungen (ppm) bre, wei, ste, hfe, fes رمر 2 Truppführer / Techniker Projektbearbeiter: WILDEN HOF rotori Graum かか Farbe hrom Halbquantitat. Bodenluftmessung Verwendetes Prüfröhrchen Hübe ppm figetoch, Brishut, Kexunik Nebengemengteile Meßpunkt: Russ Aufschlußart: Russ. KG, HS, Md, T, U, S(f-m-g), G(f-m-g), X, Y Kesounk 50 100 250 500 1000 Bodenproben in ml Hauptbodenart 6,5,x G,5, m Probenverzeichnis / Meßergebnisse 16,5' Firma / Auftraggeber :: EDERA Geländebericht Einsatzort : 00 LFACH HS Bohrtiefe in m Mächtigkeit KA Enthahme- bzw. Meßtiefe in m Schichtenverzeichnis 2,5 8,0 bis in m 23 bis Von 1,3 F0252 Non

730	Gutach	ten N	lr. 2	211	07	10,	An	lag	e 3.	.1,	Sei	te 7	7				*		7					7 ==	-	7	· ·	
HARRESS PICKEL CONSULT	10710	PB:		Sonstiges	z.B.: Kalktest, Bohrhindernis													Sonstiges	z.B. Meßmittel IdentNr.			•						
	Projekt: 240710	Unterschrift PB:		organolept. Beurteilung	Geruch, etc.	una Hillie	unan lie lie	unan Hilling	unan Helling									Grundwasserproben in ml	50 100 250 500 1000			•						¥.
	2011 4EU	Unterschrift AD: 0/1/alu	,	Bohrfortschrift Bodenfeuchte Wasserstand	m u. GOK	7			2,2										aus SG XAD HS								V	
	Datum 17.03.2em Wetter NIESTREGEU	Unterschrift A		schritt Bodenfeuc	s tr, erdf,feucht,naß	prod	eral	-s. enal	-S. Maps									Bodenluftproben	Lampentyp Eichung Pipette AK Anzahl n Gasmaus									
	Datum :. Wetter :.			Konsistenz Bohrfort	bre,wei,ste,hfe,fes I, m, s	2	6	th	Ju.) udd) ue	npentyp Eichung Pipet									
	PEN HOF	Bohrdurchmesser in mm:		Farbe Kon	bre,we	Locum	brown	hillbier	のないなられ									PID Messungen (ppm)	Bodenluft Boden Lar				0. 2					
	Projektbearbeiter: <i>いこのといいの</i> Truppführer / Techniker: Jattal に	1		engteile	,	1 Bresnasing			- 40									denluftmessung	chen Hübe ppm									
	Projektbearbe Truppführer /	Meßpunkt: RKS 7 Aufschlußart: RKS		Nebengemengteile	KG, HS, Md, T, U, S(f-m-g), G(f-m-g), X, Y	Obciscolu										j		Halbquantitat. Bodenluftmessung	Verwendetes Prüfröhrchen									
10		chlußart:R		Hauptbodenart	KG, HS, Md, T,	5	, 0,	X									isse	inm	100 250 500 1000	7	-	7						
pericht	LEACH	J Aufs	sinr		u/í	1 M15,4	42 W.S.	in 6,5,	n 6,5								s / Meßergebr		HS 20									
Geländebericht	Firma / Auftraggeber : ÉDEKA Einsatzort : NOLFACA	Bpunkt: RKS	Schichtenverzeichnis	Bohrtiefe in m Mächtigkeit KA	bis in m	0,1 0,1	117 A16	2,2 0,5	3,3 1,1				:	3			Probenverzeichnis / Meßergebnisse	e- bzw. Meß	-		2,2	5,5						
Ğ	Firm	Me	Sci	Bohrtie	NON .	0	10	43	2,2				1		1		Prc	Entnah	3	0,		7						

Gutachten Nr. 2110710, Anlage 3.1, Seite 8 z.B.: Kalktest, Bohrhindernis Bohrdurchmesser in mm: 60 Unterschrift AD: 3/11/000000 Unterschrift PB: z.B. Meßmittel Ident.-Nr. Sonstiges Sonstiges Projekt:.... Projekt-Nr. 2410710 Farbe Konsistenz Bohrfortschritt Bodenfeuchte Wasserstand organolept. Beurteilung HS 50 100 250 500 1000 Grundwasserproben in ml unauffeth, uncom Hilling unan Hilly un autillie Geruch, etc. tr, erdf,feucht,naß m u. GOK 28 Bodenluft Boden Lampentyp Eichung Pipette AK Anzahl n Gasmaus SG XAD Datum . 17. 03.2011 Wetter: NESTREGGE esal-fust Bodenluftproben ed end 4 14-15 l, m, s 3 PID Messungen (ppm) bre, wei, ste, hfe, fes Truppführer / Techniker : [] www.ce Projektbearbeiter: WILDEN HOF elh I hie brown ars. leall Los Halbquantitat. Bodenluftmessung Verwendetes Prüfröhrchen Hübe ppm Glassien, Augel, Kermik Nebengemengteile Meßpunkt: RKS 8 Aufschlußart: RKS 🔎 KG, HS, Md, T, U, S(f-m-g), G(f-m-g), X, Y 50 100 250 500 1000 Bodenproben in ml Hauptbodenart 1 Firma / Auftraggeber :: **Epeka** K15-5,K Probenverzeichnis / Meßergebnisse 1,4,4 7/5 Geländebericht Einsatzort : 60c FACH 웊 Bohrtiefe in m Mächtigkeit KA Entnahme- bzw. Meßtiefe in m Schichtenverzeichnis 7,4 0,2 4.4 2.0 Ë pis 3,0 7.4 3.0 4.5 37 47 2,0 NON 0 46 0 Non F0252

s	Gelä	Geländebericht	eric	cht			**	9							÷										HAPRESS PICKEL CONSULT	·
	Firma / A Einsatzor	Firma / Auftraggeber : EDEKA Einsatzort : NOLFACH	7 6	DEK	4			Projektbearbeiter: WILDEN HOF Truppführer / Techniker: JAHNUE	urbeiter sr / Tec	hniker	37	\$ 3 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	# in	: :	Datum: 11.03.2011 Wetter: NIESEZREGO	65	1. O. S. S. C.	3.2 REGG	2 5	'		Projekt:	skt ::.	2	Projekt	Gutacht
	Meßpunł	Meßpunkt: RKS 9	6	Aufs	Aufschlußart: RKS.	art : .	X	\$		Boh	ırdurc	hmess	er in n	Jm.:	Bohrdurchmesser in mm:		Unterschrift AD: 9/ Plus	ırift AE	8	1/00	2]	Unter	rschrif	Unterschrift PB:	len N
	Schichte			2. A.	200	Z	5	2. Ausch man Boishindeaus	deaci	1 /kan		desp	Bowleton		bei	15h	7		3	1						NI . 2
2	iefe	n Mächtigkeit KA	ii Ā	Hau	Hauptbodenart	nart	\vdash	Nebeng	Nebengemengteile	eile		Farbe	Kor	tenz	-	ortschrit	Bohrfortschritt Bodenfelichte Wasserstand	nfeucht	e Was	serstar		ralonar	A Ball	organolent Beurteilung	Sonifican	: 1 1 T
	5	ë	n/į		호	G, HS, I	Md, T, L	KG, HS, Md, T, U, S(f-m-g), G(f-m-g), X, Y), X, Y		_		bre,we	bre,wei,ste,hfe,fes		l, m, s	tr, erdf	tr, erdf,feucht,naß	E	m u. GOK		Ger	Geruch, etc.	Similar	z.B.: Kalktest, Bohrhindernis	
		10	シフ	Us, 4	4		~	Ober Goden	4		3	Sian			1	0)	-	endl			3	na	len an He His	Nico Mico	200	\top
61				4,5,9	2-15	3	. 2	Lialland, Wurkler	(Just	G.	7	Lopan			8	R M.		2000	_		.7	0		1		T
	0/8 3,0	2,2	2	GX.S	Š	5					2	and a				S		end	<u> </u>		13	1		6-16-0		Tag
	3,0 4,5	115	ک	6,5	10	k					00	200 47	1		1	V		6	-	7 7			7	1		e s
, ,													-				-		-		1		1	30). I,
											-		+						-		+					Se
											-		-				-		-		-					T
							_				-		-				-		+		+			-		9
		a											-				-		-		+					Т
													-						-		-					Т
3											-										-					
٠.								_									_				-					T
(a) 1	Probenv	Probenverzeichnis / Meßergebnisse	/ Meß	ergebn	isse																-					T
	Entnahme- bz	Entnahme- bzw. Meßtiefe in m	n m	Boder	Bodenproben in ml	in ml		Halbquantitat. Bodenluftmessung	Bodenlı	rffmess	gun	PIDN	essande	PID Messungen (ppm)			Bodenlı	Bodenluftproben	L		Shindy	Masser	Grindwassernrohen in ml	.i.	Constigue	Т
٠.	NON	bis	HS	20	100 250 500 1000	200	1000	Verwendetes Prüfröhrchen Hübe	röhrchen	Hübe	_	Bodenluft Boden		npentyp E	Lampentyp Eichung Pipette AK Anzahl n Gasmaus	velle AK	Anzahl n	Gasmaus	SG	XAD	HS 50	100	250 500	1000	7 B Meßmittel Ident Nr	Τ
۸	0.4	0,8				7					_									+	-			_		Т
	80	2,0				7			120						-	+				 -	-		+	-		Т
	2,0	3,0	.a.			7		101	,	-											-	İ	<u> </u>	-		Т
									1			. 3									-					T
			-				,	Pa			6.7°	1			-						-		-			T
							Ů,			6	- 4					+			I	\dagger	1	1	+	-		Т

F0252

The state of the s	
Firma / Auftraggeber: EDEKA	Projekt:
Einsatzort: WOLFACH	Projekt-Nr.: 211 0710
Projektbearbeiter: WILDEWHOF	Datum: 16.03.2011
Truppführer / Techniker: JAHNUE / (APEUER	Wetter: BEDELWS
Messstellenbezeichnung: RKS 1	Ruhewasserspiegel (RWS): 4, 495 m
Förderbrunnen	Uhrzeit (RWS): 14 : 30
☐ Beobachtungspegel	Phasendicke in cm:
	gelotete Tiefe des Brunnens: 5,05 m
Ausbau Ø:	Unterschied GOK/MP in m: 0,45
	Meßpunkt über/unter Gelände: 4856
Meßpunkt: Art der Probennahme	1
☑ OK Rohr ☐ Saugpumpe	☑ PVC
☐ OK geöffnete Klappe (POK) ☑ Unterwassertauch	npumpe
☐ GOK ☐ Schöpfprobe	☐ Stahl
☐ Sonst.: ☐ Sonst.:	
Pumpbeginn: 14:37 Uhr	Zählerstand Beginn:
Pumpende:	Zählerstand Ende:
Pumpmenge gesamt / Gesamtzeit:/	Förderleistung: 5
Einbautiefe der Pumpe:	Angabe in: I/s //min m³/h
Feldparameter: bei Pumpbeginn bei Probennahme	Grundwasserproben in ml Bezeichnung/
Wassertemp. : 10,5 °C 10,1 °C	HS 50 100 250 500 1000 Zusätze
el.Leitfähigkeit : 366 μS/cm 353 μS/cm	2 1 2 RKS1 GW
pH - Wert : 6,88 6,21	
Redoxpotential: + 196 mV + 201 mV	
O_2 : $5,31$ mg/l $5,38$ mg/l	
Sonstiges :	
abges. WSP : m 4,53 m	
Phasendicke : cm cm cm	
Färbung : braun	Bemerkungen/ IdentNr. der Meßgeräte
Trübung : Trübu	Demerkungen/ IdentIVI. der Meisgerate
Geruch : -	LF: GMH 3410
Sonstiges :	pH102/Redox with unth 340;
Solisuges .	
AD: Außendienst OK: Oberkante	
GOK: Geländeoberkante POK: Pegeloberkante HS: Headspace RWS: Ruhewasserspiegel	
MP: Meßpunkt WSP: Wasserspiegellage	
1,	
///	ım: Proiektbearbeiter:
11 02 2000	ım: Projektbearbeiter: Inogen'

Firma / Auftraggeber: EDEKA	Projekt:
Einsatzort: WOLFACH	Projekt-Nr.: ZM 074410
Projektbearbeiter: WILDENHOF	Datum: 16.03 2011
Truppführer / Techniker: TAHUUE	Wetter: BEDECKT
Messstellenbezeichnung: RKS Z	Ruhewasserspiegel (RWS): 3,355 m
☐ Förderbrunnen	Uhrzeit (RWS): 15:55
☐ Beobachtungspegel	Phasendicke in cm:
Kleinpegel	gelotete Tiefe des Brunnens: 403 m
Ausbau Ø:	Unterschied GOK/MP in m: 0.37
	Meßpunkt über/unter Gelände:
Meßpunkt: Art der Probennahme	: Leitungen aus :
☑ OK Rohr ☐ Saugpumpe	☑ PVC
☐ OK geöffnete Klappe (POK) 😡 Unterwassertauc	hpumpe
☐ GOK ☐ Schöpfprobe	☐ Stahl
☐ Sonst.: ☐ Sonst.:	
Pumpbeginn: 15,58 Uhr	Zählerstand Beginn:
Pumpende:	Zählerstand Ende:
Pumpmenge gesamt / Gesamtzeit:/	Förderleistung: 1/26,5 laufags gorluge
Einbautiefe der Pumpe:	Angabe in: (/s) I/min m³/h
Feldparameter: bei Pumpbeginn bei Probennahme	Grundwasserproben in ml Bezeichnung/
Wassertemp. : 3,197°C 3,1 °C	HS 50 100 250 500 1000 Zusätze
el.Leitfähigkeit : 391 μS/cm 395 μS/cm	2 1 2 RKS 2 GW
pH - Wert : 6,50 6,51	
Redoxpotential: +114 mV +155 mV	
O_2 : $5/55$ mg/1 $5/17$ mg/1	
Sonstiges :	
abges. WSP : m3,77 m	
Phasendicke : cm cm	
Färbung: 10Hoom Silv soused from	Bemerkungen/ IdentNr. der Meßgeräte
Trübung: Stock hihr Scho solved biche	
Geruch :	LF GMH 3410
Sonstiges : Tursaid	pH 10, Redox WTW im 14 340;
AD: Außendienst OK: Oberkante GOK: Geländeoberkante POK: Pegeloberkante	
HS: Headspace RWS: Ruhewasserspiegel MP: Meßpunkt WSP: Wasserspiegellage	
16 03 2011	um: Projektbearbeiter:
I I	

Firma / Auftraggeber: EDECK	Projekt:
Einsatzort: WOCFACH	Projekt-Nr.: 2M0710
Projektbearbeiter: WILDEUGIOF	Datum: 17. 03.2011
Truppführer / Techniker: AHNIE	Wetter: BEDECKT (NEBEZ
Messstellenbezeichnung: RWS 4	Ruhewasserspiegel (RWS): 3,54 m
Förderbrunnen	Uhrzeit (RWS): 9:15
☐ Beobachtungspegel	Phasendicke in cm:
	gelotete Tiefe des Brunnens: 4,05 m
Ausbau Ø:	Unterschied GOK/MP in m:0, 46
	Meßpunkt über/unter Gelände:
Meßpunkt: Art der Probennahme:	
☑ OK Rohr ☐ Saugpumpe	DX PVC
☐ OK geöffnete Klappe (POK) ☐ Unterwassertauch	pumpe
☐ GOK ☐ Schöpfprobe	☐ Stahl
☐ Sonst.: ☐ Sonst.:	Sonst.:
Pumpbeginn: 9:20 Uhr	Zählerstand Beginn:
Pumpende: 10:00 Uhr	Zählerstand Ende:
Pumpmenge gesamt / Gesamtzeit:/	Förderleistung:
Einbautiefe der Pumpe: 4,0	Angabe in: //s //min m³/h
Feldparameter: bei Pumpbeginn bei Probennahme	Grundwasserproben in ml Bezeichnung/
Feldparameter: bei Pumpbeginn bei Probennahme Wassertemp. : \$\mathcal{g}_{1}\mathcal{b}_{0}\ \text{ °C} \begin{picture} \mathcal{g}_{1}\mathcal{T}_{0}\ \mathcal{G}_{1}\mathcal{T}_{0}\ \mathcal{G}_{1}\mathcal{T}_{0}\ \mathcal{G}_{1}\mathcal{T}_{0}\ \mathcal{G}_{1}\mathc	Grundwasserproben in ml Bezeichnung/ HS 50 100 250 500 1000 Zusätze
	HS 50 100 250 500 1000 Zusätze
Wassertemp. : 8,6 °C 8,7 °C	HS 50 100 250 500 1000 Zusätze
Wassertemp. : $8,6$ °C $8,7$ °C el.Leitfähigkeit : 455 μ S/cm 430 μ S/cm	HS 50 100 250 500 1000 Zusätze
Wassertemp. : 8 ,6 °C 8 ,7 °C el.Leitfähigkeit : 455 μS/cm 430 μS/cm pH - Wert : 6 ,76 6 ,45	HS 50 100 250 500 1000 Zusätze
Wassertemp. : 8,6 °C 8,7 °C el.Leitfähigkeit : 455 μS/cm 430 μS/cm pH - Wert : 6,76 6,45 Redoxpotential : 430 mV 436 mV	HS 50 100 250 500 1000 Zusätze
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	HS 50 100 250 500 1000 Zusätze
Wassertemp.: 8,6 °C 8,7 °C el.Leitfähigkeit: 455 μ S/cm 430 μ S/cm pH - Wert: 6,76 μ S mV μ S/cm PRedoxpotential: μ SO μ S/cm	HS 50 100 250 500 1000 Zusätze
Wassertemp. : 8,6 °C 8,7 °C el.Leitfähigkeit : 455 μS/cm 430 μS/cm pH - Wert : 6,76 6,45 mV Redoxpotential: + //30 mV + //56 mV O2 : 6,49 mg/l 6,88 mg/l Sonstiges : m 3,62 m Phasendicke : cm cm	HS 50 100 250 500 1000 Zusätze 2 1 2 RKS 4 GrW
Wassertemp. : 8,6 °C 8,7 °C el.Leitfähigkeit : 455 μS/cm 430 μS/cm pH - Wert : 6,76 6,45 mV Redoxpotential: + 130 mV + 156 mV O2 : 6,49 mg/l 6,88 mg/l Sonstiges : mg/l 6,88 mg/l Sonstiges : m 3,62 m Phasendicke : cm cm cm	HS 50 100 250 500 1000 Zusätze
Wassertemp. : 8,6 °C 8,7 °C el.Leitfähigkeit : 455 μS/cm 430 μS/cm pH - Wert : 6,76	HS 50 100 250 500 1000 Zusätze
Wassertemp. : 8,6 °C 8,7 °C el.Leitfähigkeit : 455 μS/cm 430 μS/cm pH - Wert : 6,76 6,45 mV Redoxpotential: *** 130 mV *** 156 mV O2 : 6,49 mg/l 6,88 mg/l seg mg/l Sonstiges : m 3,62 m Phasendicke : Färbung :	HS 50 100 250 500 1000 Zusätze
Wassertemp. : 8,6 °C 8,7 °C el.Leitfähigkeit : 455 μS/cm 430 μS/cm pH - Wert : 6,76	HS 50 100 250 500 1000 Zusätze
Wassertemp. : 8,6 °C 8,7 °C el.Leitfähigkeit : 455 μS/cm 430 μS/cm pH - Wert : 6,76	HS 50 100 250 500 1000 Zusätze
Wassertemp. : 8,6 °C 8,7 °C el.Leitfähigkeit : 455 μS/cm 430 μS/cm pH - Wert : 6,76 6,45 mV Redoxpotential: *** 130 mV *** 156 mV O2 : 6,49 mg/l 6,88 mg/l seg mg/l Sonstiges : m 3,62 m Phasendicke : Färbung :	HS 50 100 250 500 1000 Zusätze
Wassertemp.: \$\begin{align*} \text{°C} & \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	HS 50 100 250 500 1000 Zusätze

Gutachten Nr. 2110710, Anlage 3.2, Seite 4 Probennahmeprotokoll Grundwasser

	The Company of the Co
Firma / Auftraggeber: EDFKA	Projekt:
Einsatzort: WOR FACH	Projekt-Nr.: 211 0710
Projektbearbeiter: WILDEVILOT	Datum: 19.03. 2011
Truppführer / Techniker: AHUKE	Wetter:
Meßstellenbezeichnung: RKS 7	Ruhewasserspiegel (RWS):
☐ Förderbrunnen	Uhrzeit (RWS): 14:35
☐ Beobachtungspegel	Phasendicke in cm:
	gelotete Tiefe des Brunnens: 4,05 m
Ausbau Ø:	Unterschied GOK/MP in m:
	Meßpunkt über/unter Gelände: นัรเล
Meßpunkt: Art der Probennahme:	Leitungen aus :
OK Rohr Saugpumpe	☑ PVC
OK geöffnete Klappe (POK) 🔀 Unterwassertauch	pumpe Teflon
☐ GOK ☐ Schöpfprobe	☐ Stahl
☐ Sonst.: ☐ Sonst.:	Sonst.:
Pumpbeginn: Au '40 Uhr	Zählerstand Beginn:
Pumpende:	Zählerstand Ende:
Pumpmenge gesamt / Gesamtzeit:/	Förderleistung:
Einbautiefe der Pumpe: 4,0	Angabe in: I/s //min m³/h
Feldparameter: bei Pumpbeginn bei Probennahme	Grundwasserproben in ml Bezeichnung/
Wassertemp. : 8,0 °C 3,5 °C	HS 50 100 250 500 1000 Zusätze
el.Leitfähigkeit : μS/cm 202 μS/cm	2 1 1 2 RKS7 GW
pH - Wert : 7,25 6.41	
Redoxpotential: 455 mV 464 mV	
O_2 : 7.4% mg/I $6.3Y$ mg/I	
Sonstiges :	
abges. WSP : m 3.35 m	
Phasendicke : cm cm	
Färbung : 50 h, Silver Gran	Bemerkungen/ IdentNr. der Meßgeräte
Trübung: Film Cohunch hilu	Demerkangen/ IdentIVI. der Meisgerate
Geruch :	
Sonstiges :	
Conduged .	
AD: Außendienst OK: Oberkante	
GOK: Geländeoberkante POK: Pegeloberkante HS: Headspace RWS: Ruhewasserspiegel	
MP: Meßpunkt WSP: Wassersplegellage	
Datum: 17.3.2011. Unterschrift AD: 10/10/10/10 Datum	ı: Projektbearbeiter:
Datum	regendearbeiter:

F0201

Gutachten Nr. 2110710, Anlage 3.2, Seite 5 Probennahmeprotokoll Grundwasser

Firma / Auftraggeber: EDEKA Einsatzort: WOLFACH Projektbearbeiter: WILDERSHOF Truppführer / Techniker: AHWKE	Projekt: Projekt-Nr.: 20040 Datum: 17 03 2000 Wetter: NIESTREGOO
Meßstellenbezeichnung: RKS 8	Ruhewasserspiegel (RWS): 3,76 m
Förderbrunnen	Uhrzeit (RWS): 12: 50
☐ Beobachtungspegel	Phasendicke in cm:
Kleinpegel	gelotete Tiefe des Brunnens:5,08
Ausbau Ø:	Unterschied GOK/MP in m:
	Meßpunkt über/unter Gelände:
Meßpunkt: Art der Probennahme:	
☑ OK Rohr ☐ Saugpumpe	₽VC
☐ OK geöffnete Klappe (POK) ☑ Unterwassertauch	pumpe Teflon
☐ GOK ☐ Schöpfprobe	Stehl
☐ Sonst.:	•
Pumpbeginn: 12:53 Uhr	Zählerstand Beginn:
Pumpende: 13 15 Uhr	Zählerstand Ende:
Pumpmenge gesamt / Gesamtzeit:/	Förderleistung: A/28,5
Einbautiefe der Pumpe:	Angabe in: (1/s) 1/min m³/h
Feldparameter: bei Pumpbeginn bei Probennahme	Grundwasserproben in ml Bezeichnung/
Wassertemp. : 9,3 °C 9,3 °C	HS 50 100 250 500 1000 Zusätze
el.Leitfähigkeit : 374 μS/cm 357 μS/cm	2 1 2 RKSB GW
pH - Wert : 6,72 6,54	
Redoxpotential: 110 mV 1/20 mV	
O_2 : 3.30 mg/l 3.25 mg/l	
Sonstiges :	
abges. WSP : m 4,37 m	
Phasendicke : cm cm	
Färbung : bann	Bemerkungen/ IdentNr. der Meßgeräte
Trübung: Kühe S. Musich	
Geruch :	
Sonstiges : feinson	
AD. A. S. of South and	
AD: Außendienst OK: Oberkante GOK: Geländeoberkante POK: Pegeloberkante	
HS: Headspace RWS: Ruhewasserspiegel MP: Meßpunkt WSP: Wasserspiegellage	
Datum: 17.03 & Unterschrift AD: State Datum	ı:Projektbearbeiter:

F0201

EDEPAL	
Firma / Auftraggeber: EDEKA	Projekt:
Einsatzort: WOLFACH	Projekt-Nr.: 2110710 Datum: 17.03.2011
Projektbearbeiter: LOIL DENITOF	Wetter: NIESTREGOU
Truppführer / Techniker:	
Messstellenbezeichnung: RKS 9	Ruhewasserspiegel (RWS):3, 2.9m
Förderbrunnen	Uhrzeit (RWS):
☐ Beobachtungspegel	Phasendicke in cm:
✓ Kleinpegel Ausbau Ø:	gelotete Tiefe des Brunnens: 4,06 m
Ausbau Ø :	Unterschied GOK/MP in m:
	Meßpunkt über/unter Gelände: นังเรา
Meßpunkt: Art der Probennahme:	
✓ OK Rohr ☐ Saugpumpe	
OK geöffnete Klappe (POK) K Unterwassertauch	pumpe
☐ GOK ☐ Schöpfprobe	☐ Stahl
☐ Sonst.: ☐ Sonst.:	
Pumpbeginn:	Zählerstand Beginn:
Pumpende:	Zählerstand Ende:
Pumpmenge gesamt / Gesamtzeit:/	Förderleistung: AM
Einbautiefe der Pumpe:	Angabe in: /l/s l/min m³/h
Feldparameter: bei Pumpbeginn bei Probennahme	Grundwasserproben in ml Bezeichnung/
Wassertemp. : 8,8 °C 9,1 °C	HS 50 100 250 500 1000 Zusätze
el.Leitfähigkeit : 470 μS/cm 463 μS/cm	2 1 2 RES9 GU
pH - Wert : 6,35	
Redoxpotential: + 245 mV + 247 mV	
O ₂ : 6,68 mg/1 6,00 mg/1	
Sonstiges :	
abges. WSP : m 3,295 m	
Phasendicke : cm cm	
Färbung	Bemerkungen/ IdentNr. der Meßgeräte
Färbung : biena -	L7 (14 3410
	off 16, 1 Receive to The remail to 346.
Geruch :	
Sonstiges :	
AD: Außendienst OK: Oberkante	
GOK: Geländeoberkante POK: Pegeloberkante HS: Headspace RWS: Ruhewasserspiegel	
MP: Meßpunkt WSP: Wasserspiegellage	
D. 19.3 M Harris D. J-18luly Day	2
Datum: // Unterschrift AD : Datu	m: Projektbearbeiter:

Grundwasserstände Stichtagsmessung

Einsat	zort:	ggeber:	ACH DIVIEW	110F E			Р	roiek	t-Nr.:2	110710) <i>M</i>	
			WSP in	gelotete Tiefe		Meß	ounkt		Ausbau-	Differenz* GOK/POK	Meßpunkt (m ü. NN)	WSP
Datum	Uhrzeit	Meßstelle	m unter Meßpunkt	des Brunnens in m	OK Rohr	POK	GOK	Sonstiges	durch- messer	in m unter GOK - über GOK +	(m d. NN) (vom Projek auszu	(m ü. NN) ktbearbeiter füllen)
	17:50	Rus 9	3,30		X				40	+0,55		1
	17:53	GWH	2,78		X				125	+0,70		**
	17:55		3,05		X				BUS 40			
	17:57	RK8	3,75		X			,	A 40			
		RUSY	3,54		X				Yo			
		Rus 7	3,36		X				40			
	18:06	Rusa	4,50		X				40			
	Jensey Company								*			
1												
		507								6		
							N. Company of the com					
										-		
						1/14						
AD GOK POK	= Außer = Geländ = Pegeld	deoberkante oberkante		WSP =	of Strong of Francisco	serspi	iegella	ge		Meßmittel	IdentNr	
Datum:	H.03 7	Unte	rschrift AD:	f pelin		. Da	atum:	•••••		Projektbearbei	ter:	

Nivellement

Firma / /	Auftraggebe	er: EDEL	KA		Projekt :		
Einsatzo	ort . K	OLFACH			Projekt-Nr. : 2	MO710	
Truppfül	nrer / Techr	niker :	HICKE		Wetter: Nic	SELREGEN	
Bezugspu	nkt * :)	Bezu	gshöhe in m ü. NN :		Meßmittel Ide	ent-Nr.:
Punkt-Nr.		Ablesung **	•	Höhenunterschied	Insturmenten-/	Höhe über	Bemerkungen
oder Station	R		V	(+ / -)	Konstruktionshöhe	NN	
KD	1,372					258,58	
RKS3 GOK			1,340				
RKS 1 GOK	(0,922				
RKS1 ROK			0,484			A1	
RKS Z GOK			1,913			7	
RKS Z ROK			1,528				
PRKS 5 GOK			2,190				
RKS 8 GOK			7,383				
RUSS ROK		*	1,258				
RUSTER			3,145				
RKS 7 Run			2,245				
CHS 9GW			27572				
GUME	h		2,542				
Ost ou			2,618			2	
RICS'T ROX	,		2,045				
RUS 4 GOR			2,040				
RIGH ROW			1,590	1		7.	
RKS 6 GOL			2,395	1-1		7	No. and Consumer of the Consum
				·····			
				-			*1
1							
N 3							
KD : POK : GOK :	Höhenfestp Kanaldecke Pegeloberk Geländeobe Sonstiger B	el ante erkante	Berne	**) R = R V = V	ückblick orblick		
Datum: 17	.3.2011	Unterschrift Al	1, 10	Lu Datum	F	Projektbearbeiter :.	

ANLAGE 4

Laborberichte des chemischen Untersuchungslabors

SGS INSTITUT FRESENIUS GmbH Pestalozzistr. 78333 Stockach

HPC HARRESS PICKEL CONSULT AG Herrn Wildenhof Hermann-von-Vicari-Str. 25 78464 Konstanz

Environmental Services

SGS INSTITUT FRESENIUS GmbH Pestalozzistr. 78333 Stockach

Fax +49 7771/8000-35

Prüfbericht 1095005 Auftrags Nr. 1911051

Telefon +49 7771/8000-30

Kunden Nr. 10040909

Herr Peter Breig

Stockach, den 29.03.2011

Ihr Auftrag/Projekt: DU BV EDEKA Wolfach

Ihr Bestellzeichen: 2110710 Ihr Bestelldatum: 18.03.2011

Prüfzeitraum von 18.03.2011 bis 25.03.2011 erste laufende Probenummer 110161459 Probeneingang von 18.03.2011 bis 21.03.2011

Dieser Prüfbericht ersetzt den Prüfbericht 1092708.

SGS INSTITUT FRESENIUS

Peter Breig Projektleiter Hans-Georg W. Karbach Standortleiter

Seite 1 von 12

DU BV EDEKA Wolfach 2110710

Prüfbericht Nr. 1095005 Auftrag Nr. 1911051

Seite 2 von 12 29.03.2011

Proben durch IF-Kurier abgeholt

Matrix: Feststoff

Probennummer Bezeichnung

110161459

110161460 MP Oberboden

0.0.0.1m

0.1.0.3m

		0,0-0,1m	0,1-0,3m	0,1-2,2m		
Eingangsdatum:		18.03.2011	18.03.2011	18.03.2011		
Parameter	Einheit				Bestimmungs- grenze	Methode
Feststoffuntersuchung	en:					
Trockensubstanz 105°C	Masse-%	61,8	82,8	89,1	0,1	DIN EN 14346
pH-Wert (CaCl2)		6,8	6,9	7,2		ISO 10390
Metalle im Feststoff :						
Arsen	mg/kg TR	22	21	13	2	DIN EN ISO 11885
Blei	mg/kg TR	260	210	200	2	DIN EN ISO 11885
Cadmium	mg/kg TR	1,0	0,4	0,3	0,2	DIN EN ISO 11885
Chrom	mg/kg TR	32	34	35	1	DIN EN ISO 11885
Kupfer	mg/kg TR	160	260	120	1	DIN EN ISO 11885
Nickel	mg/kg TR	34	21	21	1	DIN EN ISO 11885
Quecksilber	mg/kg TR	11	0,4	0,3	0,1	DIN EN 1483
Zink	mg/kg TR	740	370	270	1	DIN EN ISO 11885
		200	200			
KW-Index C10-C40	mg/kg TR	< 10	160	20	10	DIN EN 14039

Quecksilber

KW-Index C10-C40

Zink

mg/l

mg/l

mg/l

< 0,0002

< 0,01

< 0,1

DU BV EDEKA Wolfach 2110710	3			Prüfbericht Nr. Auftrag Nr. 1911		Seite 3 von 12 29.03.2011
Probennummer Bezeichnung		110161459 MP Oberboden 0,0-0,1m	110161460 MP Oberboden 0,1-0,3m	110161461 RKS1 0,1-2,2m		
PAK (EPA) :						
Naphthalin	mg/kg TR	< 0,05	< 0,05	< 0,05	0,05	DIN ISO 18287
Acenaphthylen	mg/kg TR	< 0,05	< 0,05	< 0,05	0,05	DIN ISO 18287
Acenaphthen	mg/kg TR	< 0,05	< 0,05	< 0,05	0,05	DIN ISO 18287
Fluoren	mg/kg TR	< 0,05	< 0,05	< 0,05	0,05	DIN ISO 18287
Phenanthren	mg/kg TR	0,26	0,35	< 0,05	0,05	DIN ISO 18287
Anthracen	mg/kg TR	< 0,05	0,11	< 0,05	0,05	DIN ISO 18287
Fluoranthen	mg/kg TR	1,1	1,3	0,13	0,05	DIN ISO 18287
Pyren	mg/kg TR	0,92	1,1	0,11	0,05	DIN ISO 18287
Benz(a)anthracen	mg/kg TR	0,54	0,67	0,06	0,05	DIN ISO 18287
Chrysen	mg/kg TR	0,54	0,60	0,07	0,05	DIN ISO 18287
Benzo(b)fluoranthen	mg/kg TR	0,79	0,89	0,09	0,05	DIN ISO 18287
Benzo(k)fluoranthen	mg/kg TR	0,30	0,32	< 0,05	0,05	DIN ISO 18287
Benzo(a)pyren	mg/kg TR	0,54	0,62	0,06	0,05	DIN ISO 18287
Dibenzo(a,h)anthracen	mg/kg TR	0,11	0,10	< 0,05	0,05	DIN ISO 18287
Benzo(g,h,i)perylen	mg/kg TR	0,34	0,37	< 0,05	0,05	DIN ISO 18287
Indeno(1,2,3-c,d)pyren	mg/kg TR	0,31	0,34	< 0,05	0,05	DIN ISO 18287
Summe PAK nach TVO	mg/kg TR	3,38	3,84	0,28		DIN ISO 18287
Summe PAK nach EPA	mg/kg TR	5,75	6,77	0,52		DIN ISO 18287
Metalle im Eluat :						
Arsen	mg/l	< 0,005	< 0,005	0,011	0,005	DIN EN ISO 11885
Blei	mg/l	< 0,005	< 0,005	< 0,005	0,005	DIN EN ISO 11885
Cadmium	mg/l	< 0,001	< 0,001	< 0,001	0,001	DIN EN ISO 11885
Chrom	mg/l	< 0,005	< 0,005	< 0,005	0,005	DIN EN ISO 11885
Kobalt	mg/l	< 0,005	< 0,005	< 0,005	0,005	DIN EN ISO 11885
Kupfer	mg/l	0,024	0,022	0,007	0,005	DIN EN ISO 11885
Nickel	mg/l	< 0,005	< 0,005	< 0,005	0,005	DIN EN ISO 11885

< 0,0002

0,01

< 0,1

< 0,0002

0,02

< 0,1

0,0002

0,01

0,1

DIN EN 1483

DIN EN ISO 11885

DIN EN ISO 9377-2

DU BV EDEKA Wolfach 2110710	1				Prüfbericht Nr. 1095005 Auftrag Nr. 1911051	
Probennummer Bezeichnung		110161459 MP Oberboden 0,0-0,1m	110161460 MP Oberboden 0,1-0,3m	110161461 RKS1 0,1-2,2m		
PAK im Eluat :						
Naphthalin	μg/l	0,04	0,12	0.03	0,01	DIN 38407-39
Acenaphthylen	μg/l	< 0,01	0,11	0,02(1)	0,01	DIN 38407-39
Acenaphthen	μg/l	0,02	0,06	0,03(1)	0,01	DIN 38407-39
Fluoren	μg/l	0,02	0,06	0,04	0,01	DIN 38407-39
Phenanthren	µg/l	0,03	0,11	0,09	0,01	DIN 38407-39
Anthracen	μg/l	< 0,01	0,02	< 0,01	0,01	DIN 38407-39
Fluoranthen	µg/l	0,01	0,20	0,03	0,01	DIN 38407-39
Pyren	µg/l	< 0,01	0,11	0,01	0,01	DIN 38407-39
Benz(a)anthracen	μg/l	< 0,01	0,05	< 0,01	0,01	DIN 38407-39
Chrysen	µg/l	< 0,01	0,06	< 0,01	0,01	DIN 38407-39
Benzo(b)fluoranthen	µg/l	< 0,01	0,05	< 0,01	0,01	DIN 38407-39
Benzo(k)fluoranthen	µg/l	< 0,01	0,02	< 0,01	0,01	DIN 38407-39
Benzo(a)pyren	µg/l	< 0,01	0,03	< 0,01	0,01	DIN 38407-39
Dibenzo(a,h)anthracen	µg/l	< 0,01	< 0,01	< 0,01	0,01	DIN 38407-39
Benzo(g,h,i)perylen	µg/l	< 0,01	0,01	< 0,01	0,01	DIN 38407-39
Indeno(1,2,3-c,d)pyren	µg/l	< 0,01	0,02	< 0,01	0,01	DIN 38407-39

1,03

0,12

0,25(1)

Summe PAK nach EPA µg/l

⁽¹⁾ überlagert

Prüfbericht Nr. 1095005 Auftrag Nr. 1911051 Seite 5 von 12 29.03.2011

Proben durch IF-Kurier a	abgeholt	Matrix: Feststoff				
Probennummer Bezeichnung		110161462 RKS2 0,1-1,7m	110161463 RKS3 0,1-1,1m	110161464 RKS3 1,1-2,5m		
Eingangsdatum:		18.03.2011	18.03.2011	18.03.2011		
Parameter	Einheit				Bestimmungs- grenze	Methode
Feststoffuntersuchung	jen :					
Trockensubstanz 105°C	Masse-%	80,8	88,3	73,9	0,1	DIN EN 14346
pH-Wert (CaCl2)		7,0	7,5	-0		ISO 10390
Metalle im Feststoff :						
Arsen	mg/kg TR	15	46	15	2	DIN EN ISO 11885
Blei	mg/kg TR	110	1400	150	2	DIN EN ISO 11885
Cadmium	mg/kg TR	0,2	0,2	0,3	0,2	DIN EN ISO 11885
Chrom	mg/kg TR	36	21	26	1	DIN EN ISO 11885
Kupfer	mg/kg TR	51	150	100	1	DIN EN ISO 11885
Nickel	mg/kg TR	19	20	17	1	DIN EN ISO 11885
Quecksilber	mg/kg TR	0,2	0,4	2,4	0,1	DIN EN 1483
Zink	mg/kg TR	120	230	270	1	DIN EN ISO 11885
10M Indox 040 040	// TD	20	0.4	200	40	DIN 511 4 4000
KW-Index C10-C40	mg/kg TR	36	84	290	10	DIN EN 14039

KW-Index C10-C40

mg/l

DU BV EDEKA Wolfach 2110710				Prüfbericht Nr. 1095005 Auftrag Nr. 1911051		Seite 6 von 12 29.03.2011
Probennummer Bezeichnung		110161462 RKS2 0,1-1,7m	110161463 RKS3 0,1-1,1m	110161464 RKS3 1,1-2,5m		
PAK (EPA) :						
Naphthalin	mg/kg TR	< 0,05	< 0.05	0,18	0,05	DIN ISO 18287
Acenaphthylen	mg/kg TR	< 0,05	< 0,05	0,12	0,05	DIN ISO 18287
Acenaphthen	mg/kg TR	< 0,05	< 0,05	0,22	0,05	DIN ISO 18287
Fluoren	mg/kg TR	< 0,05	< 0,05	0,56	0,05	DIN ISO 18287
Phenanthren	mg/kg TR	0,06	0,34	3,1	0,05	DIN ISO 18287
Anthracen	mg/kg TR	< 0,05	0,10	0.97	0,05	DIN ISO 18287
Fluoranthen	mg/kg TR	0,18	0,89	4,0	0,05	DIN ISO 18287
Pyren	mg/kg TR	0,15	0,74	3,0	0,05	DIN ISO 18287
Benz(a)anthracen	mg/kg TR	0,08	0,41	1,7	0,05	DIN ISO 18287
Chrysen	mg/kg TR	0,09	0,37	1,6	0,05	DIN ISO 18287
Benzo(b)fluoranthen	mg/kg TR	0,12	0,56	1,6	0,05	DIN ISO 18287
Benzo(k)fluoranthen	mg/kg TR	< 0,05	0,21	0,70	0,05	DIN ISO 18287
Benzo(a)pyren	mg/kg TR	0,08	0,39	1,2	0,05	DIN ISO 18287
Dibenzo(a,h)anthracen	mg/kg TR	< 0,05	0,06	0,16	0,05	DIN ISO 18287
Benzo(g,h,i)perylen	mg/kg TR	< 0,05	0,21	0,61	0,05	DIN ISO 18287
Indeno(1,2,3-c,d)pyren	mg/kg TR	< 0,05	0,20	0,57	0,05	DIN ISO 18287
Summe PAK nach TVO	mg/kg TR	0,38	2,46	8,68		DIN ISO 18287
Summe PAK nach EPA	mg/kg TR	0,76	4,48	20,29		DIN ISO 18287
Metalle im Eluat :						
Arsen	mg/l	< 0,005	0,013	0,081	0,005	DIN EN ISO 11885
Blei	mg/l	< 0,005	< 0,005	0,080	0,005	DIN EN ISO 11885
Cadmium	mg/l	< 0,001	< 0,001	< 0,001	0,001	DIN EN ISO 11885
Chrom	mg/l	< 0,005	< 0,005	< 0,005	0,005	DIN EN ISO 11885
Kobalt	mg/l	< 0,005	< 0,005	< 0,005	0,005	DIN EN ISO 11885
Kupfer	mg/l	0,021	0,010	0,081	0,005	DIN EN ISO 11885
Nickel	mg/l	< 0,005	< 0,005	< 0,005	0,005	DIN EN ISO 11885
Quecksilber	mg/l	< 0,0002	< 0,0002	< 0,0002	0,0002	DIN EN 1483
Zink	mg/l	0,04	0,01	< 0,01	0,01	DIN EN ISO 11885

< 0,1

< 0,1

0,1

DIN EN ISO 9377-2

< 0,1

DU BV EDEKA Wolfach 2110710			Prüfbericht Nr. 1095005 Auftrag Nr. 1911051		Seite 7 von 12 29.03.2011	
Probennummer Bezeichnung		110161462 RKS2 0,1-1,7m	110161463 RKS3 0,1-1,1m	110161464 RKS3 1,1-2,5m		
PAK im Eluat :						
Naphthalin	μg/l	0,75	0,02	0,08	0,01	DIN 38407-39
Acenaphthylen	µg/l	0,16	< 0.01	0,01(1)	0,01	DIN 38407-39
Acenaphthen	μg/l	0,48	< 0,01	0,28	0,01	DIN 38407-39
Fluoren	μg/l	0,53	< 0.01	0,22	0,01	DIN 38407-39
Phenanthren	µg/l	0,48	0,02	0.33	0,01	DIN 38407-39
Anthracen	μg/l	0,07	< 0,01	0,04	0,01	DIN 38407-39
Fluoranthen	µg/l	0,06	< 0,01	0,08	0,01	DIN 38407-39
Pyren	µg/l	0,04	< 0,01	0,05	0,01	DIN 38407-39
Benz(a)anthracen	μg/l	< 0,02	< 0,01	< 0,01	0,01	DIN 38407-39
Chrysen	μg/l	< 0,02	< 0,01	< 0,01	0,01	DIN 38407-39
Benzo(b)fluoranthen	μg/l	< 0,02	< 0,01	< 0,01	0,01	DIN 38407-39
Benzo(k)fluoranthen	µg/l	< 0,02	< 0,01	< 0,01	0,01	DIN 38407-39
Benzo(a)pyren	µg/l	< 0,02	< 0,01	< 0,01	0,01	DIN 38407-39
Dibenzo(a,h)anthracen	μg/l	< 0,02	< 0,01	< 0,01	0,01	DIN 38407-39
Benzo(g,h,i)perylen	μg/l	< 0,02	< 0,01	< 0,01	0,01	DIN 38407-39
Indeno(1,2,3-c,d)pyren	µg/l	< 0,02	< 0,01	< 0,01	0,01	DIN 38407-39
				/41		

0,04

2,57

1,09(1)

Summe PAK nach EPA µg/l

⁽¹⁾ überlagert

Prüfbericht Nr. 1095005 Auftrag Nr. 1911051 Seite 8 von 12 29.03.2011

Proben durch IF-Kurier abgeholt		Matrix: Feststoff							
ė									
Probennummer Bezeichnung		110161465 RKS4 0,1-1,2m	110161466 RKS5 0,1-2,3m	110161467 RKS6 0,1-3,4m					
Eingangsdatum:		18.03.2011	18.03.2011	18.03.2011					
Parameter	Einheit		9		Bestimmungs- grenze	Methode			
Feststoffuntersuchungen:									
Trockensubstanz 105°C	Masse-%	85,6	88,0	88,1	0,1	DIN EN 14346			
pH-Wert (CaCl2)			6,4	7,3		ISO 10390			
Metalle im Feststoff :									
Arsen	mg/kg TR	19	13	12	2	DIN EN ISO 11885			
Blei	mg/kg TR	150	63	150	2	DIN EN ISO 11885			
Cadmium	mg/kg TR	0,5	0,3	0,3	0,2	DIN EN ISO 11885			
Chrom	mg/kg TR	31	22	34	1	DIN EN ISO 11885			
Kupfer	mg/kg TR	890	67	120	1	DIN EN ISO 11885			
Nickel	mg/kg TR	19	16	17	1	DIN EN ISO 11885			
Quecksilber	mg/kg TR	0,3	1,2	0,8	0,1	DIN EN 1483			
Zink	mg/kg TR	500	260	260	1	DIN EN ISO 11885			
KW-Index C10-C40	mg/kg TR	910	55	55	10	DIN EN 14039			

KW-Index C10-C40

mg/l

DU BV EDEKA Wolfach				Prüfbericht Nr. 1095005 Auftrag Nr. 1911051		Seite 9 von 12 29.03.2011
Probennummer Bezeichnung		110161465 RKS4 0,1-1,2m	110161466 RKS5 0,1-2,3m	110161467 RKS6 0,1-3,4m		
PAK (EPA) :						
Naphthalin	mg/kg TR	< 0,05	< 0,05	< 0.05	0,05	DIN ISO 18287
Acenaphthylen	mg/kg TR	< 0,05	< 0,05	< 0,05	0,05	DIN ISO 18287
Acenaphthen	mg/kg TR	0,15	< 0,05	< 0,05	0,05	DIN ISO 18287
Fluoren	mg/kg TR	0,18	< 0,05	< 0,05	0,05	DIN ISO 18287
Phenanthren	mg/kg TR	4,5	0,46	0,09	0,05	DIN ISO 18287
Anthracen	mg/kg TR	1,5	0,11	< 0,05	0,05	DIN ISO 18287
Fluoranthen	mg/kg TR	25	1,3	0,28	0,05	DIN ISO 18287
Pyren	mg/kg TR	20	0,84	0,24	0,05	DIN ISO 18287
Benz(a)anthracen	mg/kg TR	12	0,41	0,14	0,05	DIN ISO 18287
Chrysen	mg/kg TR	11	0,38	0,15	0,05	DIN ISO 18287
Benzo(b)fluoranthen	mg/kg TR	12	0,40	0,23	0,05	DIN ISO 18287
Benzo(k)fluoranthen	mg/kg TR	4,8	0,15	0,09	0,05	DIN ISO 18287
Benzo(a)pyren	mg/kg TR	7,7	0,24	0,16	0,05	DIN ISO 18287
Dibenzo(a,h)anthracen	mg/kg TR	1,5	< 0,05	< 0,05	0,05	DIN ISO 18287
Benzo(g,h,i)perylen	mg/kg TR	3,7	0,14	0,11	0,05	DIN ISO 18287
Indeno(1,2,3-c,d)pyren	mg/kg TR	3,8	0,13	0,10	0,05	DIN ISO 18287
Summe PAK nach TVO	mg/kg TR	57,0	2,36	0,97		DIN ISO 18287
Summe PAK nach EPA	mg/kg TR	107,83	4,56	1,59		DIN ISO 18287
Metalle im Eluat :						
Arsen	mg/l	0,011	0,007	0,006	0,005	DIN EN ISO 11885
Blei	mg/l	0,021	< 0,005	0,006	0,005	DIN EN ISO 11885
Cadmium	mg/l	< 0,001	< 0,001	< 0,001	0,001	DIN EN ISO 11885
Chrom	mg/l	< 0,005	< 0,005	< 0,005	0,005	DIN EN ISO 11885
Kobalt	mg/l	< 0,005	< 0,005	< 0,005	0,005	DIN EN ISO 11885
Kupfer	mg/l	0,050	0,006	0,013	0,005	DIN EN ISO 11885
Nickel	mg/l	< 0,005	< 0,005	< 0,005	0,005	DIN EN ISO 11885
Quecksilber	mg/l	< 0,0002	< 0,0002	< 0,0002	0,0002	DIN EN 1483
Zink	mg/l	0,03	< 0,01	< 0,01	0,01	DIN EN ISO 11885

< 0,1 < 0,1

< 0,1

0,1

DIN EN ISO 9377-2

µg/l

µg/l

µg/l

µg/l

µg/l

µg/l

µg/l

µg/l

0,17

0,18

0,07

0,12

0,02

0,04

0,06

1,92

DU BV EDEKA Wolfach 2110710				Prüfbericht Nr. 1095005 Auftrag Nr. 1911051		Seite 10 von 12 29.03.2011
Probennummer		110161465	110161466	110161467		
Bezeichnung		RKS4	RKS5	RKS6		
		0,1-1,2m	0,1-2,3m	0,1-3,4m		
PAK im Eluat :						
Naphthalin	μg/l	0,17	0,05	0.04	0,01	DIN 38407-39
Acenaphthylen	μg/l	0,03	0,01(1)	0,01(1)	0,01	DIN 38407-39
Acenaphthen	µg/l	0,09	0,07	0,02	0,01	DIN 38407-39
Fluoren	μg/l	0,07	0,05	0,02	0,01	DIN 38407-39
Phenanthren	µg/l	0,16	0,05	0,03	0,01	DIN 38407-39
Anthracen	μg/l	0,03	< 0,01	< 0,01	0,01	DIN 38407-39
Fluoranthen	µg/l	0,32	0,02	0,01	0,01	DIN 38407-39
Pyren	µg/l	0,23	0,01	< 0,01	0,01	DIN 38407-39
Benz(a)anthracen	μg/l	0,16	< 0,01	< 0,01	0,01	DIN 38407-39

< 0,01

< 0,01

< 0,01

< 0,01

< 0,01

< 0,01

< 0,01

0,26(1)

< 0,01

< 0,01

< 0,01

< 0,01

< 0,01

< 0,01

< 0,01

0,13(1)

0,01

0,01

0,01

0,01

0,01

0,01

0,01

DIN 38407-39

Chrysen

Benzo(b)fluoranthen

Benzo(k)fluoranthen

Dibenzo(a,h)anthracen

Indeno(1,2,3-c,d)pyren

Summe PAK nach EPA

Benzo(g,h,i)perylen

Benzo(a)pyren

⁽¹⁾ überlagert

INSTITUT FRESENIUS

DU BV EDEKA Wolfach 2110710

Summe PAK nach EPA mg/kg TR

Prüfbericht Nr. 1095005

Auftrag Nr. 1911051

Seite 11 von 12 29.03.2011

DIN ISO 18287

Proben durch IF-Kurier abgeholt		Matrix: Feststoff						
Probennummer Bezeichnung		110161468 RKS7 0,1-1,7m	110161469 RKS8 0,0-1,4m	110164960 RKS 9 0,1-0,8m				
Eingangsdatum:		18.03.2011	18.03.2011	21.03.2011				
Parameter	Einheit				Bestimmungs- grenze	Methode		
Feststoffuntersuchung	en:							
Trockensubstanz 105°C		80,9	90,6	98,0	0,1	DIN EN 14346		
Metalle im Feststoff :								
Arsen	mg/kg TR	18	24	6	2	DIN EN ISO 11885		
Blei	mg/kg TR	89	230	4	2	DIN EN ISO 11885		
Cadmium	mg/kg TR	< 0,2	< 0,2	< 0,2	0,2	DIN EN ISO 11885		
Chrom	mg/kg TR	34	25	24	1	DIN EN ISO 11885		
Kupfer	mg/kg TR	34	55	12	1	DIN EN ISO 11885		
Nickel	mg/kg TR	16	16	11	1	DIN EN ISO 11885		
Quecksilber	mg/kg TR	0,2	0,3	< 0,1	0,1	DIN EN 1483		
Zink	mg/kg TR	82	120	50	1	DIN EN ISO 11885		
KW-Index C10-C40	mg/kg TR	17	67	< 10	10	DIN EN 14039		
PAK (EPA) :								
Naphthalin	mg/kg TR	< 0,05	< 0,05	< 0,05	0,05	DIN ISO 18287		
Acenaphthylen	mg/kg TR	< 0,05	< 0,05	< 0,05	0,05	DIN ISO 18287		
Acenaphthen	mg/kg TR	< 0,05	< 0,05	< 0,05	0,05	DIN ISO 18287		
Fluoren	mg/kg TR	< 0,05	< 0,05	< 0,05	0,05	DIN ISO 18287		
Phenanthren	mg/kg TR	< 0,05	0,16	< 0,05	0,05	DIN ISO 18287		
Anthracen	mg/kg TR	< 0,05	< 0,05	< 0.05	0,05	DIN ISO 18287		
Fluoranthen	mg/kg TR	< 0,05	0,57	< 0,05	0,05	DIN ISO 18287		
Pyren	mg/kg TR	< 0,05	0,49	< 0,05	0,05	DIN ISO 18287		
Benz(a)anthracen	mg/kg TR	< 0,05	0,31	< 0,05	0,05	DIN ISO 18287		
Chrysen	mg/kg TR	< 0,05	0,31	< 0,05	0,05	DIN ISO 18287		
Benzo(b)fluoranthen	mg/kg TR	< 0,05	0,51	< 0,05	0,05	DIN ISO 18287		
Benzo(k)fluoranthen	mg/kg TR	< 0,05	0,20	< 0,05	0,05	DIN ISO 18287		
Benzo(a)pyren	mg/kg TR	< 0,05	0,33	< 0,05	0,05	DIN ISO 18287		
Dibenzo(a,h)anthracen	mg/kg TR	< 0,05	0,06	< 0,05	0,05	DIN ISO 18287		
Benzo(g,h,i)perylen	mg/kg TR	< 0,05	0,22	< 0,05	0,05	DIN ISO 18287		
Indeno(1,2,3-c,d)pyren	mg/kg TR	< 0,05	0,20	< 0,05	0,05	DIN ISO 18287		
Summe PAK nach TVO	mg/kg TR	.	2,03	-		DIN ISO 18287		

3,36

Summe PAK nach EPA µg/l

Prüfbericht Nr. 1095005 Auftrag Nr. 1911051

Seite 12 von 12 29.03.2011

2110710

Probennummer Bezeichnung		110161468 RKS7 0,1-1,7m	110161469 RKS8 0,0-1,4m	110164960 RKS 9 0,1-0,8m		
Metalle im Eluat :						
Arsen	mg/l	< 0,005	< 0,005	< 0,005	0,005	DIN EN ISO 11885
Blei	mg/l	0,009	0,010	< 0,005	0,005	DIN EN ISO 11885
Cadmium	mg/l	< 0,001	< 0,001	< 0,001	0,001	DIN EN ISO 11885
Chrom	mg/l	< 0,005	< 0,005	< 0,005	0,005	DIN EN ISO 11885
Kobalt	mg/l	< 0,005	< 0,005	=	0,005	DIN EN ISO 11885
Kupfer	mg/l	< 0,005	0,021	< 0,005	0,005	DIN EN ISO 11885
Nickel	mg/l	< 0,005	< 0,005	< 0,005	0,005	DIN EN ISO 11885
Quecksilber	mg/l	< 0,0002	< 0,0002	< 0,0002	0,0002	DIN EN 1483
Zink	mg/l	0,01	0,02	< 0,01	0,01	DIN EN ISO 11885
KW-Index C10-C40	mg/l	< 0,1	< 0,1	< 0,1	0,1	DIN EN ISO 9377-2
PAK im Eluat :						
Naphthalin	μg/l	0,06	0,31	< 0,01	0,01	DIN 38407-39
Acenaphthylen	µg/l	0,04	0,09	< 0,1	0,01	DIN 38407-39
Acenaphthen	µg/l	0,09	0,28	< 0,01	0,01	DIN 38407-39
Fluoren	µg/l	0,10	0,21	< 0,01	0,01	DIN 38407-39
Phenanthren	μg/l	0,11	0,12	< 0,01	0,01	DIN 38407-39
Anthracen	μg/l	0,02	0,01	< 0,01	0,01	DIN 38407-39
Fluoranthen	μg/l	0,03	0,03	< 0,01	0,01	DIN 38407-39
Pyren	μg/l	0,01	0,02	< 0,01	0,01	DIN 38407-39
Benz(a)anthracen	μg/l	< 0,01	< 0,01	< 0,01	0,01	DIN 38407-39
Chrysen	μg/l	< 0,01	< 0,01	< 0,01	0,01	DIN 38407-39
Benzo(b)fluoranthen	μg/l	< 0,01	< 0,01	< 0,01	0,01	DIN 38407-39
Benzo(k)fluoranthen	μg/l	< 0,01	< 0,01	< 0,01	0,01	DIN 38407-39
Benzo(a)pyren	μg/l	< 0,01	< 0,01	< 0,01	0,01	DIN 38407-39
Dibenzo(a,h)anthracen	μg/l	< 0,01	< 0,01	< 0,01	0,01	DIN 38407-39
Benzo(g,h,i)perylen	µg/l	< 0,01	< 0,01	< 0,01	0,01	DIN 38407-39
Indeno(1,2,3-c,d)pyren	µg/l	< 0,01	< 0,01	< 0,01	0,01	DIN 38407-39
Summe PAK nach EPA	μg/l	-	<u></u>	-		
0 0414 1	,	200 0000	0.000			

1,07

0,46

SGS INSTITUT FRESENIUS GmbH Pestalozzistr. 78333 Stockach

HPC HARRESS PICKEL CONSULT AG Herrn Wildenhof Hermann-von-Vicari-Str. 25 78464 Konstanz

Stockach, den 23.03.2011

Ihr Auftrag/Projekt: DU BV EDEKA Wolfach

Ihr Bestellzeichen: 2110710 Ihr Bestelldatum: 18.03.2011

Prüfzeitraum von 18.03.2011 bis 23.03.2011 erste laufende Probenummer 110161062 Probeneingang von 18.03.2011 bis 21.03.2011

SGS INSTITUT FRESENIUS

Peter Breig Projektleiter Prüfbericht 1091325 Auftrags Nr. 1911774 Kunden Nr. 10040909

Herr Peter Breig Telefon +49 7771/8000-30 Fax +49 7771/8000-35 Deutscher Akkreditierungs Rat

DAP-PL-2566.99

Nach DIN EN ISO/IEC 17025 durch die DAP Deutsches Akkreditierungssystem Prufwesen GmbH akkreditiertes

Zugelassen nach Trinkwasserverordnung

Environmental Services

SGS INSTITUT FRESENIUS GmbH Pestalozzistr. 78333 Stockach

Hans-Georg W. Karbach Standortleiter

INSTITUT FRESENIUS

DU BV EDEKA Wolfach 2110710

Prüfbericht Nr. 1091325

Auftrag Nr. 1911774

Seite 2 von 5 23.03.2011

Proben durch IF-Kurier abgeholt

Matrix: Grundwasser

Probennummer Bezeichnung		110161062 RKS1GW	110161063 RKS2GW	110161064 RKS4GW		
Eingangsdatum:		18.03.2011	18.03.2011	18.03.2011		
Parameter	Einheit				Bestimmungs- grenze	Methode
Metalle :						
Arsen	mg/l	< 0,005	< 0,005	< 0,005	0,005	DIN EN ISO 11885
Blei	mg/l	< 0,005	< 0,005	< 0,005	0,005	DIN EN ISO 11885
Cadmium	mg/l	< 0,001	< 0,001	< 0,001	0,001	DIN EN ISO 11885
Chrom	mg/l	< 0,005	< 0,005	< 0,005	0,005	DIN EN ISO 11885
Kupfer	mg/l	< 0,005	< 0,005	< 0,005	0,005	DIN EN ISO 11885
Nickel	mg/l	< 0,005	< 0,005	< 0,005	0,005	DIN EN ISO 11885
Quecksilber	mg/l	< 0,0001	< 0,0001	< 0,0001	0,0001	DIN EN 1483
Zink	mg/l	< 0,01	< 0,01	< 0,01	0,01	DIN EN ISO 11885
KW-Index C10-C40	mg/l	< 0,1	< 0,1	< 0,1	0,1	DIN EN ISO 9377-2
LHKW Headspace :						
cis-1,2-Dichlorethen	μg/l	< 1	< 1	< 1	1	DIN EN ISO 10301
trans-1,2-Dichlorethen	μg/l	< 1	< 1	< 1	1	DIN EN ISO 10301
Dichlormethan	µg/l	< 1	< 1	< 1	1	DIN EN ISO 10301
Tetrachlormethan	μg/l	< 0,2	< 0,2	< 0,2	0,2	DIN EN ISO 10301
1,1,1-Trichlorethan	μg/l	< 0,2	< 0,2	< 0,2	0,2	DIN EN ISO 10301
Trichlorethen	µg/l	0,2	0,2	< 0,1	0,1	DIN EN ISO 10301
Tetrachlorethen	µg/l	< 0,1	0,2	0,2	0,1	DIN EN ISO 10301
Trichlormethan	µg/l	< 0,5	< 0,5	< 0,5	0,5	DIN EN ISO 10301
Chlorethen	µg/l	< 1	< 1	< 1	1	DIN EN ISO 10301
Summe nachgewiesener LHKW	r μg/l	0,2	0,4	0,2		

INSTITUT FRESENIUS

DU BV EDEKA Wolfach 2110710				Prüfbericht Nr. 1091325 Auftrag Nr. 1911774		Seite 3 von 5 23.03.2011
Probennummer Bezeichnung		110161062 RKS1GW	110161063 RKS2GW	110161064 RKS4GW		
BTEX Headspace :						
Benzol	µg/l	< 1	< 1	< 1	1	DIN 38407-9-1
Toluol	μg/l	< 1	< 1	< 1	1	DIN 38407-9-1
Ethylbenzol	μg/l	< 1	< 1	< 1	1	DIN 38407-9-1
o-Xylol	μg/l	< 1	< 1	< 1	1	DIN 38407-9-1
m-,p-Xylol	µg/l	< 2	< 2	< 2	2	DIN 38407-9-1
Styrol	µg/l	< 1	< 1	< 1	1	DIN 38407-9-1
iso-Propylbenzol	μg/l	< 1	< 1	< 1	1	DIN 38407-9-1
Summe nachgewiesener BTEX	µg/l	-	-	1-		
PAK(EPA):						
Naphthalin	µg/l	< 0,01	< 0,01	< 0,01	0,01	DIN EN ISO 17993
Acenaphthylen	µg/l	< 0,1	< 0,1	< 0,1	0,1	DIN EN ISO 17993
Acenaphthen	μg/l	< 0,01	< 0,01	< 0,01	0,01	DIN EN ISO 17993
Fluoren	µg/l	< 0,01	< 0,01	< 0,01	0,01	DIN EN ISO 17993
Phenanthren	µg/l	< 0,01	< 0,01	< 0,01	0,01	DIN EN ISO 17993
Anthracen	µg/l	< 0,01	< 0,01	< 0,01	0,01	DIN EN ISO 17993
Fluoranthen	µg/l	< 0,01	< 0,01	< 0,01	0,01	DIN EN ISO 17993
Pyren	µg/l	< 0,01	< 0,01	< 0,01	0,01	DIN EN ISO 17993
Benz(a)anthracen	µg/l	< 0,01	< 0,01	< 0,01	0,01	DIN EN ISO 17993
Chrysen	µg/l	< 0,01	< 0,01	< 0,01	0,01	DIN EN ISO 17993
Benzo(b)fluoranthen	μg/l	< 0,01	< 0,01	< 0,01	0,01	DIN EN ISO 17993
Benzo(k)fluoranthen	µg/l	< 0,01	< 0,01	< 0,01	0,01	DIN EN ISO 17993
Benzo(a)pyren	µg/l	< 0,01	< 0,01	< 0,01	0,01	DIN EN ISO 17993
Dibenzo(a,h)anthracen	µg/l	< 0,01	< 0,01	< 0,01	0,01	DIN EN ISO 17993
Benzo(g,h,i)perylen	µg/l	< 0,01	< 0,01	< 0,01	0,01	DIN EN ISO 17993
Indeno(1,2,3-c,d)pyren	µg/l	< 0,01	< 0,01	< 0,01	0,01	DIN EN ISO 17993
Summe PAK nach EPA	µg/l	-	-	-		
Summe PAK nach TVO	µg/l	-54		1.70		

LHKW

DU BV EDEKA Wolfach 2110710 Prüfbericht Nr. 1091325

Auftrag Nr. 1911774

Seite 4 von 5 23.03.2011

Proben durch IF-Kurier abgeholt		Matrix: Grundwasser				
Probennummer Bezeichnung		110161065 RKS8GW	110162880 RKS 7 GW	110162881 RKS 9 GW		
Eingangsdatum:		18.03.2011	21.03.2011	21.03.2011		
Parameter	Einheit				Bestimmungs- grenze	Methode
Metalle :						
Arsen	mg/l	< 0,005	< 0,005	< 0,005	0,005	DIN EN ISO 11885
Blei	mg/l	< 0,005	< 0,005	< 0,005	0,005	DIN EN ISO 11885
Cadmium	mg/l	< 0,001	< 0,001	< 0,001	0,001	DIN EN ISO 11885
Chrom	mg/l	< 0,005	< 0,005	< 0,005	0,005	DIN EN ISO 11885
Kupfer	mg/l	< 0,005	< 0,005	< 0,005	0,005	DIN EN ISO 11885
Nickel	mg/l	< 0,005	0,007	< 0,005	0,005	DIN EN ISO 11885
Quecksilber	mg/l	< 0,0001	< 0,0001	< 0,0001	0,0001	DIN EN 1483
Zink	mg/l	< 0,01	0,01	< 0,01	0,01	DIN EN ISO 11885
KW-Index C10-C40	mg/l	< 0,1	< 0,1	< 0,1	0,1	DIN EN ISO 9377-2
LHKW Headspace :						
cis-1,2-Dichlorethen	µg/l	< 1	< 1	< 1	1	DIN EN ISO 10301
trans-1,2-Dichlorethen	μg/l	< 1	< 1	< 1	1	DIN EN ISO 10301
Dichlormethan	μg/l	< 1	< 1	< 1	1	DIN EN ISO 10301
Tetrachlormethan	μg/l	< 0,2	< 0,2	< 0,2	0,2	DIN EN ISO 10301
1,1,1-Trichlorethan	µg/l	< 0,2	< 0,2	< 0,2	0,2	DIN EN ISO 10301
Trichlorethen	μg/l	< 0,1	< 0,1	< 0,1	0,1	DIN EN ISO 10301
Tetrachlorethen	μg/l	< 0,1	< 0,1	< 0,1	0,1	DIN EN ISO 10301
Trichlormethan	μg/l	< 0,5	< 0,5	< 0,5	0,5	DIN EN ISO 10301
Chlorethen	μg/l	< 1	< 1	< 1	1	DIN EN ISO 10301
Summe nachgewiesener	μg/l	-	-	•		

DU BV EDEKA Wolfach 2110710				Prüfbericht Nr. 1 Auftrag Nr. 1911	W-2012 (1947) 2012 (2017)	Seite 5 von 5 23.03.2011	
Probennummer Bezeichnung		110161065 RKS8GW	110162880 RKS 7 GW	110162881 RKS 9 GW			
BTEX Headspace :							
Benzol	μg/l	< 1	< 1	< 1	1	DIN 38407-9-1	
Toluol	μg/l	2	< 1	< 1	1	DIN 38407-9-1	
Ethylbenzol	μg/l	< 1	< 1	< 1	1	DIN 38407-9-1	
o-Xylol	μg/l	< 1	< 1	< 1	1	DIN 38407-9-1	
m-,p-Xylol	µg/l	< 2	< 2	< 2	2	DIN 38407-9-1	
Styrol	µg/l	< 1	< 1	< 1	1	DIN 38407-9-1	
iso-Propylbenzol	µg/l	< 1	< 1	< 1	1	DIN 38407-9-1	
Summe nachgewiesener BTEX	µg/l	2	×	-			
PAK(EPA):							
Naphthalin	µg/l	< 0,01	< 0,01	< 0,01	0,01	DIN EN ISO 17993	
Acenaphthylen	µg/l	< 0,1	< 0,1	< 0,1	0,1	DIN EN ISO 17993	
Acenaphthen	µg/l	< 0,01	< 0,01	< 0,01	0,01	DIN EN ISO 17993	
Fluoren	µg/l	< 0,01	< 0,01	< 0,01	0,01	DIN EN ISO 17993	
Phenanthren	μg/l	< 0,01	< 0,01	< 0,01	0,01	DIN EN ISO 17993	
Anthracen	µg/l	< 0,01	< 0,01	< 0,01	0,01	DIN EN ISO 17993	
Fluoranthen	µg/l	< 0,01	< 0,01	< 0,01	0,01	DIN EN ISO 17993	
Pyren	µg/l	< 0,01	< 0,01	< 0,01	0,01	DIN EN ISO 17993	
Benz(a)anthracen	µg/l	< 0,01	< 0,01	< 0,01	0,01	DIN EN ISO 17993	
Chrysen	µg/l	< 0,01	< 0,01	< 0,01	0,01	DIN EN ISO 17993	
Benzo(b)fluoranthen	μg/l	< 0,01	< 0,01	< 0,01	0,01	DIN EN ISO 17993	
Benzo(k)fluoranthen	μg/l	< 0,01	< 0,01	< 0,01	0,01	DIN EN ISO 17993	
Benzo(a)pyren	μg/l	< 0,01	< 0,01	< 0,01	0,01	DIN EN ISO 17993	
Dibenzo(a,h)anthracen	µg/l	< 0,01	< 0,01	< 0,01	0,01	DIN EN ISO 17993	
Benzo(g,h,i)perylen	µg/l	< 0,01	< 0,01	< 0,01	0,01	DIN EN ISO 17993	
Indeno(1,2,3-c,d)pyren	µg/l	< 0,01	< 0,01	< 0,01	0,01	DIN EN ISO 17993	
Summe PAK nach EPA	µg/l	-	<u>u</u>	12			
Summe PAK nach TVO	μg/l	-	÷	-			

SGS INSTITUT FRESENIUS GmbH Pestalozzistr. 78333 Stockach

HPC HARRESS PICKEL CONSULT AG Herrn Wildenhof Hermann-von-Vicari-Str. 25 78464 Konstanz Prüfbericht 1091327 Auftrags Nr. 1911774 Kunden Nr. 10040909

Peter Breig Telefon +49 7771/8000-30 Fax +49 7771/8000-35

Nach DIN EN ISO/IEC 17025 durch die DAP Deutsches Akkreditierungssystem Prufwesen GmbH akkreditiertes Pruflaboratorium

Zugelassen nach Trinkwasserverordnung

Environmental Services

SGS INSTITUT FRESENIUS GmbH Pestalozzistr. 78333 Stockach

Stockach, den 23.03.2011

Ihr Auftrag/Projekt: DU BV EDEKA Wolfach

Ihr Bestellzeichen: 2110710 Ihr Bestelldatum: 18.03.2011

Prüfzeitraum von 21.03.2011 bis 22.03.2011 erste laufende Probenummer 110161066 Probeneingang am 18.03.2011

SGS INSTITUT FRESENIUS

Peter Breig Projektleiter Hans-Georg W. Karbach Standortleiter

Prüfbericht Nr. 1091327 Auftrag Nr. 1911774 Seite 2 von 5 23.03.2011

Probe 110161066 RKS3 BL			Probenmatrix	Bodenluft	
1L Eingangsdatum:	18.03.2011	Eingangsart	durch IF-Kurier	abgeholt	
Parameter	Einheit	Ergebnis	Bestimmungs- grenze	Methode	Lab
Probenahmedaten :			3.0		
Volumen, angesaugt	1	1,0	0,1	VDI 3865, BI. 3	DD
LHKW:					
Chlorethen (Vinylchlorid)	mg/m³	< 0,5	0,5	VDI3865,BI.3(1)	DD
1.1-Dichlorethen	mg/m³	< 0,05	0,05	VDI3865,BI.3(1)	DD
trans-1,2-Dichlorethen	mg/m³	< 2	2	VDI3865,BI.3(1)	DD
cis-1,2-Dichlorethen	mg/m³	< 0,2	0,2	VDI3865,BI.3(1)	DD
Trichlorethen	mg/m³	< 0,2	0,2	VDI3865,BI.3(1)	DD
Tetrachlorethen	mg/m³	< 2	2	VDI3865,BI.3(1)	DD
Dichlormethan	mg/m³	< 5	5	VDI3865,BI.3(1)	DD
Trichlormethan	mg/m³	< 0,2	0,2	VDI3865,BI.3(1)	DD
Tetrachlormethan	mg/m³	< 0,05	0,05	VDI3865,BI.3(1)	DD
1.2-Dichlorethan	mg/m³	< 0,5	0,5	VDI3865,BI.3(1)	DD
1,1,1-Trichlorethan	mg/m³	< 0,05	0,05	VDI3865,BI.3(1)	DD
1.1.2-Trichlorethan	mg/m³	< 0,2	0,2	VDI3865,BI.3(1)	DD
Summe nachgewiesener LHKW	mg/m³				DD
(1) Analyse der Mess-u.	Kontrollschicht	mittels GC-MS			
BTEX:					
Benzol	mg/m³	0,07	0,05	VDI3865,BI.3(1)	DD
Toluol	mg/m³	0,33	0,05	VDI3865,BI.3(1)	DD
Ethylbenzol	mg/m³	< 0,05	0,05	VDI3865,BI.3(1)	DD
m,p-Xylol	mg/m³	0,10	0,05	VDI3865,BI.3(1)	DD
o-Xylol	mg/m³	< 0,05	0,05	VDI3865,BI.3(1)	DD
Summe nachgewiesener BTEX	mg/m³	0,50			DD
Alkylbenzole:					
Styrol	mg/m³	< 0,05	0,05	VDI3865,BI.3(1)	DD
iso-Propylbenzol	mg/m³	< 0,05	0,05	VDI3865,BI.3(1)	DD

iso-Propylbenzol

mg/m³

< 0,05

0,05

VDI3865,BI.3(1)

DD

Prüfbericht Nr. 1091327

Auftrag 1911774 Probe 110161067

Seite 3 von 5 23.03.2011

2110/10				Auftrag 1911774	Probe 1
Probe	102	RKS4 BL			
Fortsetzung		1L			
Fortsetzung		IL			
Parameter	Einheit	Ergebnis	Bestimmungs- grenze	Methode	Lab
Probe 110161067 RKS4 BL			Probenmatrix	Bodenluft	
1L					
Eingangsdatum:	18.03.2011	Eingangsart	durch IF-Kurier	abgeholt	
Parameter	Einheit	Ergebnis	Bestimmungs-	Methode	Lab
Probenahmedaten :			grenze		
Volumen, angesaugt	1	1,0	0,1	VDI 3865, BI. 3	DD
LHKW:					
Chlorethen (Vinylchlorid)	mg/m³	< 0,5	0,5	VDI3865,BI.3(1)	DD
1.1-Dichlorethen	mg/m³	< 0,05	0,05	VDI3865,BI.3(1)	DD
trans-1,2-Dichlorethen	mg/m³	< 2	2	VDI3865,BI.3(1)	DD
cis-1,2-Dichlorethen	mg/m³	< 0,2	0,2	VDI3865,BI.3(1)	DD
Trichlorethen	mg/m³	< 0,2	0,2	VDI3865,BI.3(1)	DD
Tetrachlorethen	mg/m³	< 2	2	VDI3865,BI.3(1)	DD
Dichlormethan	mg/m³	< 5	5	VDI3865,BI.3(1)	DD
Trichlormethan	mg/m³	< 0,2	0,2	VDI3865,BI.3(1)	DD
Tetrachlormethan	mg/m³	< 0,05	0,05	VDI3865,BI.3(1)	DD
1.2-Dichlorethan	mg/m³	< 0,5	0,5	VDI3865,BI.3(1)	DD
1,1,1-Trichlorethan	mg/m³	< 0,05	0,05	VDI3865,BI.3(1)	DD
1.1.2-Trichlorethan	mg/m³	< 0,2	0,2	VDI3865,BI.3(1)	DD
Summe nachgewiesener LHKW	mg/m³	i s			DD
(1) Analyse der Mess-u.	Kontrollschich	t mittels GC-MS			
BTEX:					
Benzol	mg/m³	< 0,05	0,05	VDI3865,BI.3(1)	DD
Toluol	mg/m³	0,20	0,05	VDI3865,BI.3(1)	DD
Ethylbenzol	mg/m³	< 0,05	0,05	VDI3865,BI.3(1)	DD
m,p-Xylol	mg/m³	0,10	0,05	VDI3865,BI.3(1)	DD
o-Xylol	mg/m³	< 0,05	0,05	VDI3865,BI.3(1)	DD
Summe nachgewiesener BTEX	mg/m³	0,30			DD
Alkylbenzole:					
Styrol	mg/m³	< 0,05	0,05	VDI3865,BI.3(1)	DD
ica Propulhonzal	ma/m3	- 0 OF	0.05	\(D)0005 D) 0(1)	

Prüfbericht Nr. 1091327

Seite 4 von 5

iso-Propylbenzol

mg/m³

< 0,05

0,05

VDI3865,BI.3(1)

DD

Auftrag 1911774 Probe 110161068

23.03.2011

Probe RKS5 BL Fortsetzung 1L Parameter Einheit Ergebnis Bestimmungs-Methode Lab grenze Probe 110161068 Probenmatrix Bodenluft **RKS5 BL** Eingangsdatum: 18.03.2011 Eingangsart durch IF-Kurier abgeholt Parameter Einheit Ergebnis Bestimmungs-Methode Lab grenze Probenahmedaten: Volumen, angesaugt 1.0 0,1 VDI 3865, Bl. 3 DD LHKW: Chlorethen (Vinylchlorid) mg/m³ < 0,5 0,5 VDI3865,BI.3(1) DD 1.1-Dichlorethen mg/m³ < 0,05 0,05 VDI3865,BI.3(1) DD trans-1,2-Dichlorethen VDI3865,BI.3(1) mg/m³ < 2 2 DD cis-1,2-Dichlorethen mg/m³ < 0,2 0,2 VDI3865,BI,3(1) DD Trichlorethen mg/m³ < 0,2 0,2 VDI3865,BI.3(1) DD Tetrachlorethen mg/m³ < 2 2 VDI3865,BI.3(1) DD Dichlormethan mg/m³ < 5 5 VDI3865,BI.3(1) DD Trichlormethan mg/m³ < 0,2 0,2 VDI3865,BI.3(1) DD Tetrachlormethan mg/m³ < 0,05 0,05 VDI3865,BI.3(1) DD 1.2-Dichlorethan mg/m³ < 0,5 0,5 VDI3865,BI.3(1) DD 1,1,1-Trichlorethan mg/m³ < 0,05 0,05 VDI3865,BI.3(1) DD 1.1.2-Trichlorethan mg/m³ < 0,2 0,2 VDI3865,BI.3(1) DD Summe nachgewiesener mg/m³ DD LHKW (1) Analyse der Mess-u.Kontrollschicht mittels GC-MS BTEX: Benzol mg/m³ < 0,05 0,05 VDI3865,BI.3(1) DD Toluol mg/m³ 0,26 0,05 VDI3865,BI.3(1) DD Ethylbenzol mg/m³ < 0,05 0,05 VDI3865,BI.3(1) DD m,p-Xylol mg/m³ 0,10 0,05 VDI3865,BI.3(1) DD o-Xylol mg/m³ < 0,05 0,05 VDI3865,BI.3(1) DD Summe nachgewiesener mg/m3 0,36 DD **BTEX** Alkylbenzole: Styrol mg/m³ < 0,05 0,05 VDI3865,BI.3(1) DD

Prüfbericht Nr. 1091327 Auftrag 1911774 Probe 110161069

Seite 5 von 5 23.03.2011

2110710				Auftrag 1911774	Probe 110
Probe		RKS 6BL			
Fortsetzung		1L			
Parameter	Einheit	Ergebnis	Bestimmungs- grenze	Methode	Lab
Probe 110161069 RKS 6BL			Probenmatrix	Bodenluft	
1L Eingangsdatum:	18.03.2011	Eingangsart	durch IF-Kurier	abgeholt	
Parameter	Einheit	Ergebnis	Bestimmungs- grenze	Methode	Lab
Probenahmedaten:					
Volumen, angesaugt	1	1,0	0,1	VDI 3865, BI. 3	DD
LHKW:					
Chlorethen (Vinylchlorid)		< 0,5	0,5	VDI3865,BI.3(1)	DD
1.1-Dichlorethen	mg/m³	< 0,05	0,05	VDI3865,BI.3(1)	DD
trans-1,2-Dichlorethen	mg/m³	< 2	2	VDI3865,BI.3(1)	DD
cis-1,2-Dichlorethen	mg/m³	< 0,2	0,2	VDI3865,BI.3(1)	DD
Trichlorethen	mg/m³	< 0,2	0,2	VDI3865,BI.3(1)	DD
Tetrachlorethen	mg/m³	< 2	2	VDI3865,BI.3(1)	DD
Dichlormethan	mg/m³	< 5	5	VDI3865,BI.3(1)	DD
Trichlormethan	mg/m³	< 0,2	0,2	VDI3865,BI.3(1)	DD
Tetrachlormethan	mg/m³	< 0,05	0,05	VDI3865,BI.3(1)	DD
1.2-Dichlorethan	mg/m³	< 0,5	0,5	VDI3865,BI.3(1)	DD
1,1,1-Trichlorethan	mg/m³	< 0,05	0,05	VDI3865,BI.3(1)	DD
1.1.2-Trichlorethan	mg/m³	< 0,2	0,2	VDI3865,BI.3(1)	DD
Summe nachgewiesener LHKW	mg/m³	-			DD
(1) Analyse der Mess-u	.Kontrollschich	t mittels GC-MS			
BTEX:					
Benzol	mg/m³	< 0,05	0,05	VDI3865,BI.3(1)	DD
Toluol	mg/m³	0,20	0,05	VDI3865,BI.3(1)	DD
Ethylbenzol	mg/m³	< 0,05	0,05	VDI3865,BI.3(1)	DD
m,p-Xylol	mg/m³	0,14	0,05	VDI3865,BI.3(1)	DD
o-Xylol	mg/m³	< 0,05	0,05	VDI3865,BI.3(1)	DD
Summe nachgewiesener BTEX	mg/m³	0,34		,	DD
Alkylbenzole:					
Styrol	mg/m³	< 0,05	0,05	VDI3865,BI.3(1)	DD
iso-Propylbenzol	mg/m³	< 0,05	0,05	VDI3865,BI.3(1)	DD
		0,00	0,00	v D10000, D1.3(1)	טט

Die Laborstandorte der SGS Gruppe Deutschland gemäß den oben genannten Kürzeln sind aufgeführt unter http://www.institut-fresenius.de/filestore/89/laborstandortkuerzelsgs2.pdf.

ANLAGE 5

Fotodokumentation

FOTODOKUMENTATION

Foto 1: Schurf SCH1 mit Nivellierlatte

Foto 2: Haufwerk zu SCH1

Foto 3: Schurf SCH2 mit Nivellierlatte

Foto 4: Haufwerk zu SCH2

Foto 5: Schurf SCH3 mit Nivellierlatte

Foto 6: Haufwerk zu SCH3

Foto 7: Schurf SCH4 mit Nivellierlatte

Foto 8: Haufwerk zu SCH4

Foto 9: Schurf SCH5 mit Nivellierlatte

Foto 10: Haufwerk zu SCH5